Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Ye Wang

Deceptive Signals: Unveiling and Countering Sensor Spoofing Attacks on Cyber Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Fengjun Li, Chair
Drew Davidson
Rongqing Hui
Bo Luo
Haiyang Chao

Abstract

In modern computer systems, sensors play a critical role in enabling a wide range of functionalities, from navigation in autonomous vehicles to environmental monitoring in smart homes. Acting as an interface between physical and digital worlds, sensors collect data to drive automated functionalities and decision-making. However, this reliance on sensor data introduces significant potential vulnerabilities, leading to various physical, sensor-enabled attacks such as spoofing, tampering, and signal injection. Sensor spoofing attacks, where adversaries manipulate sensor input or inject false data into target systems, pose serious risks to system security and privacy.

In this work, we have developed two novel sensor spoofing attack methods that significantly enhance both efficacy and practicality. The first method employs physical signals that are imperceptible to humans but detectable by sensors. Specifically, we target deep learning based facial recognition systems using infrared lasers. By leveraging advanced laser modeling, simulation-guided targeting, and real-time physical adjustments, our infrared laser-based physical adversarial attack achieves high success rates with practical real-time guarantees, surpassing the limitations of prior physical perturbation attacks. The second method embeds physical signals, which are inherently present in the system, into legitimate patterns. In particular, we integrate trigger signals into standard operational patterns of actuators on mobile devices to construct remote logic bombs, which are shown to be able to evade all existing detection mechanisms. Achieving a zero false-trigger rate with high success rates, this novel sensor bomb is highly effective and stealthy.

Our study on emerging sensor-based threats highlights the urgent need for comprehensive defenses against sensor spoofing. Along this direction, we design and investigate two defense strategies to mitigate these threats. The first strategy involves filtering out physical signals identified as potential attack vectors. The second strategy is to leverage beneficial physical signals to obfuscate malicious patterns and reinforce data integrity. For example, side channels targeting the same sensor can be used to introduce cover signals that prevent information leakage, while environment-based physical signals serve as signatures to authenticate data. Together, these strategies form a comprehensive defense framework that filters harmful sensor signals and utilizes beneficial ones, significantly enhancing the overall security of cyber systems.


Sravan Reddy Chintareddy

Combating Spectrum Crunch with Efficient Machine-Learning Based Spectrum Access and Harnessing High-frequency Bands for Next-G Wireless Networks

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Erik Perrins
Dongjie Wang
Shawn Keshmiri

Abstract

There is an increasing trend in the number of wireless devices that is now already over 14 billion and is expected to grow to 40 billion devices by 2030. In addition, we are witnessing an unprecedented proliferation of applications and technologies with wireless connectivity requirements such as unmanned aerial vehicles, connected health, and radars for autonomous vehicles. The advent of new wireless technologies and devices will only worsen the current spectrum crunch that service providers and wireless operators are already experiencing. In this PhD study, we address these challenges through the following research thrusts, in which we consider two emerging applications aimed at advancing spectrum efficiency and high-frequency connectivity solutions.

 

First, we focus on effectively utilizing the existing spectrum resources for emerging applications such as networked UAVs operating within the Unmanned Traffic Management (UTM) system. In this thrust, we develop a coexistence framework for UAVs to share spectrum with traditional cellular networks by using machine learning (ML) techniques so that networked UAVs act as secondary users without interfering with primary users. We propose federated learning (FL) and reinforcement learning (RL) solutions to establish a collaborative spectrum sensing and dynamic spectrum allocation framework for networked UAVs. In the second part, we explore the potential of millimeter-wave (mmWave) and terahertz (THz) frequency bands for high-speed data transmission in urban settings. Specifically, we investigate THz-based midhaul links for 5G networks, where a network's central units (CUs) connect to distributed units (DUs). Through numerical analysis, we assess the feasibility of using 140 GHz links and demonstrate the merits of high-frequency bands to support high data rates in midhaul networks for future urban communications infrastructure. Overall, this research is aimed at establishing frameworks and methodologies that contribute toward the sustainable growth and evolution of wireless connectivity.


Agraj Magotra

Data-Driven Insights into Sustainability: An Artificial Intelligence (AI) Powered Analysis of ESG Practices in the Textile and Apparel Industry

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Prasad Kulkarni
Zijun Yao


Abstract

The global textile and apparel (T&A) industry is under growing scrutiny for its substantial environmental and social impact, producing 92 million tons of waste annually and contributing to 20% of global water pollution. In Bangladesh, one of the world's largest apparel exporters, the integration of Environmental, Social, and Governance (ESG) practices is critical to meet international sustainability standards and maintain global competitiveness. This master's study leverages Artificial Intelligence (AI) and Machine Learning (ML) methodologies to comprehensively analyze unstructured corporate data related to ESG practices among LEED-certified Bangladeshi T&A factories. 

Our study employs advanced techniques, including Web Scraping, Natural Language Processing (NLP), and Topic Modeling, to extract and analyze sustainability-related information from factory websites. We develop a robust ML framework that utilizes Non-Negative Matrix Factorization (NMF) for topic extraction and a Random Forest classifier for ESG category prediction, achieving an 86% classification accuracy. The study uncovers four key ESG themes: Environmental Sustainability, Social : Workplace Safety and Compliance, Social: Education and Community Programs, and Governance. The analysis reveals that 46% of factories prioritize environmental initiatives, such as energy conservation and waste management, while 44% emphasize social aspects, including workplace safety and education. Governance practices are significantly underrepresented, with only 10% of companies addressing ethical governance, healthcare provisions and employee welfare.

To deepen our understanding of the ESG themes, we conducted a Centrality Analysis to identify the most influential keywords within each category, using measures such as degree, closeness, and eigenvector centrality. Furthermore, our analysis reveals that higher certification levels, like Platinum, are associated with a more balanced emphasis on environmental, social, and governance practices, while lower levels focus primarily on environmental efforts. These insights highlight key areas where the industry can improve and inform targeted strategies for enhancing ESG practices. Overall, this ML framework provides a data-driven, scalable approach for analyzing unstructured corporate data and promoting sustainability in Bangladesh’s T&A sector, offering actionable recommendations for industry stakeholders, policymakers, and global brands committed to responsible sourcing.


Shalmoli Ghosh

High-Power Fabry-Perot Quantum-Well Laser Diodes for Application in Multi-Channel Coherent Optical Communication Systems

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rongqing Hui , Chair
Shannon Blunt
Jim Stiles


Abstract

Wavelength Division Multiplexing (WDM) is essential for managing rapid network traffic growth in fiber optic systems. Each WDM channel demands a narrow-linewidth, frequency-stabilized laser diode, leading to complexity and increased energy consumption. Multi-wavelength laser sources, generating optical frequency combs (OFC), offer an attractive solution, enabling a single laser diode to provide numerous equally spaced spectral lines for enhanced bandwidth efficiency.

Quantum-dot and quantum-dash OFCs provide phase-synchronized lines with low relative intensity noise (RIN), while Quantum Well (QW) OFCs offer higher power efficiency, but they have higher RIN in the low frequency region of up to 2 GHz. However, both quantum-dot/dash and QW based OFCs, individual spectral lines exhibit high phase noise, limiting coherent detection. Output power levels of these OFCs range between 1-20 mW where the power of each spectral line is typically less than -5 dBm. Due to this requirement, these OFCs require excessive optical amplification, also they possess relatively broad spectral linewidths of each spectral line, due to the inverse relationship between optical power and linewidth as per the Schawlow-Townes formula. This constraint hampers their applicability in coherent detection systems, highlighting a challenge for achieving high-performance optical communication.

In this work, coherent system application of a single-section Quantum-Well Fabry-Perot (FP) laser diode is demonstrated. This laser delivers over 120 mW optical power at the fiber pigtail with a mode spacing of 36.14 GHz. In an experimental setup, 20 spectral lines from a single laser transmitter carry 30 GBaud 16-QAM signals over 78.3 km single-mode fiber, achieving significant data transmission rates. With the potential to support a transmission capacity of 2.15 Tb/s (4.3 Tb/s for dual polarization) per transmitter, including Forward Error Correction (FEC) and maintenance overhead, it offers a promising solution for meeting the escalating demands of modern network traffic efficiently.


Anissa Khan

Privacy Preserving Biometric Matching

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Perry Alexander, Chair
Prasad Kulkarni
Fengjun Li


Abstract

Biometric matching is a process by which distinct features are used to identify an individual. Doing so privately is important because biometric data, such as fingerprints or facial features, is not something that can be easily changed or updated if put at risk. In this study, we perform a piece of the biometric matching process in a privacy preserving manner by using secure multiparty computation (SMPC). Using SMPC allows the identifying biological data, called a template, to remain stored by the data owner during the matching process. This provides security guarantees to the biological data while it is in use and therefore reduces the chances the data is stolen. In this study, we find that performing biometric matching using SMPC is just as accurate as performing the same match in plaintext.

 


Bryan Richlinski

Prioritize Program Diversity: Enumerative Synthesis with Entropy Ordering

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Sankha Guria, Chair
Perry Alexander
Drew Davidson
Jennifer Lohoefener

Abstract

Program synthesis is a popular way to create a correct-by-construction program from a user-provided specification. Term enumeration is a leading technique to systematically explore the space of programs by generating terms from a formal grammar. These terms are treated as candidate programs which are tested/verified against the specification for correctness. In order to prioritize candidates more likely to satisfy the specification, enumeration is often ordered by program size or other domain-specific heuristics. However, domain-specific heuristics require expert knowledge, and enumeration by size often leads to terms comprised of frequently repeating symbols that are less likely to satisfy a specification. In this thesis, we build a heuristic that prioritizes term enumeration based on variability of individual symbols in the program, i.e., information entropy of the program. We use this heuristic to order programs in both top-down and bottom-up enumeration. We evaluated our work on a subset of the PBE-String track of the 2017 SyGuS competition benchmarks and compared against size-based enumeration. In top-down enumeration, our entropy heuristic shortens runtime in ~56% of cases and tests fewer programs in ~80% before finding a valid solution. For bottom-up enumeration, our entropy heuristic improves the number of enumerated programs in ~30% of cases before finding a valid solution, without improving the runtime. Our findings suggest that using entropy to prioritize program enumeration is a promising step forward for faster program synthesis.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

 

This research provides a deep dive into the npm-centric software supply chain, exploring various facets and phenomena that impact the security of this software supply chain. Such factors include (i) hidden code clones--which obscure provenance and can stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts open-source development practices, and (v) package compromise via malicious updates. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Jagadeesh Sai Dokku

Intelligent Chat Bot for KU Website: Automated Query Response and Resource Navigation

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

This project introduces an intelligent chatbot designed to improve user experience on our university website by providing instant, automated responses to common inquiries. Navigating a university website can be challenging for students, applicants, and visitors who seek quick information about admissions, campus services, events, and more. To address this challenge, we developed a chatbot that simulates human conversation using Natural Language Processing (NLP), allowing users to find information more efficiently. The chatbot is powered by a Bidirectional Long Short-Term Memory (BiLSTM) model, an architecture well-suited for understanding complex sentence structures. This model captures contextual information from both directions in a sentence, enabling it to identify user intent with high accuracy. We trained the chatbot on a dataset of intent-labeled queries, enabling it to recognize specific intentions such as asking about campus facilities, academic programs, or event schedules. The NLP pipeline includes steps like tokenization, lemmatization, and vectorization. Tokenization and lemmatization prepare the text by breaking it into manageable units and standardizing word forms, making it easier for the model to recognize similar word patterns. The vectorization process then translates this processed text into numerical data that the model can interpret. Flask is used to manage the backend, allowing seamless communication between the user interface and the BiLSTM model. When a user submits a query, Flask routes the input to the model, processes the prediction, and delivers the appropriate response back to the user interface. This chatbot demonstrates a successful application of NLP in creating interactive, efficient, and user-friendly solutions. By automating responses, it reduces reliance on manual support and ensures users can access relevant information at any time. This project highlights how intelligent chatbots can transform the way users interact with university websites, offering a faster and more engaging experience.

 


Anahita Memar

Optimizing Protein Particle Classification: A Study on Smoothing Techniques and Model Performance

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hossein Saiedian
Prajna Dhar


Abstract

This thesis investigates the impact of smoothing techniques on enhancing classification accuracy in protein particle datasets, focusing on both binary and multi-class configurations across three datasets. By applying methods including Averaging-Based Smoothing, Moving Average, Exponential Smoothing, Savitzky-Golay, and Kalman Smoothing, we sought to improve performance in Random Forest, Decision Tree, and Neural Network models. Initial baseline accuracies revealed the complexity of multi-class separability, while clustering analyses provided valuable insights into class similarities and distinctions, guiding our interpretation of classification challenges.

These results indicate that Averaging-Based Smoothing and Moving Average techniques are particularly effective in enhancing classification accuracy, especially in configurations with marked differences in surfactant conditions. Feature importance analysis identified critical metrics, such as IntMean and IntMax, which played a significant role in distinguishing classes. Cross-validation validated the robustness of our models, with Random Forest and Neural Network consistently outperforming others in binary tasks and showing promising adaptability in multi-class classification. This study not only highlights the efficacy of smoothing techniques for improving classification in protein particle analysis but also offers a foundational approach for future research in biopharmaceutical data processing and analysis.


Yousif Dafalla

Web-Armour: Mitigating Reconnaissance and Vulnerability Scanning with Injecting Scan-Impeding Delays in Web Deployments

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li
Bo Luo
ZJ Wang

Abstract

Scanning hosts on the internet for vulnerable devices and services is a key step in numerous cyberattacks. Previous work has shown that scanning is a widespread phenomenon on the internet and commonly targets web application/server deployments. Given that automated scanning is a crucial step in many cyberattacks, it would be beneficial to make it more difficult for adversaries to perform such activity.

In this work, we propose Web-Armour, a mitigation approach to adversarial reconnaissance and vulnerability scanning of web deployments. The proposed approach relies on injecting scanning impeding delays to infrequently or rarely used portions of a web deployment. Web-Armour has two goals: First, increase the cost for attackers to perform automated reconnaissance and vulnerability scanning; Second, introduce minimal to negligible performance overhead to benign users of the deployment. We evaluate Web-Armour on live environments, operated by real users, and on different controlled (offline) scenarios. We show that Web-Armour can effectively lead to thwarting reconnaissance and internet-wide scanning.


Past Defense Notices

Dates

Adam Sarhage

Design of Multi-Section Coupled Line Coupler

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Jim Stiles, Chair
Chris Allen
Glenn Prescott


Abstract

Coupled line couplers are used as directional couplers to enable measurement of forward and reverse power in RF transmitters. These measurements provide valuable feedback to the control loops regulating transmitter power output levels. This project seeks to synthesize, simulate, build, and test a broadband, five-stage coupled line coupler with a 20 dB coupling factor. The coupler synthesis is evaluated against ideal coupler components in Keysight ADS.  Fabrication of coupled line couplers is typically accomplished with a stripline topology, but a microstrip topology is additionally evaluated. Measurements from the fabricated coupled line couplers are then compared to the Keysight ADS EM simulations, and some explanations for the differences are provided. Additionally, measurements from a commercially available broadband directional coupler are provided to show what can be accomplished with the right budget.


Mohsen Nayebi Kerdabadi

Contrastive Learning of Temporal Distinctiveness for Survival Analysis in Electronic Health Records

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Zijun Yao, Chair
Fengjun Li
Cuncong Zhong


Abstract

Survival analysis plays a crucial role in many healthcare decisions, where the risk prediction for the events of interest can support an informative outlook for a patient's medical journey. Given the existence of data censoring, an effective way of survival analysis is to enforce the pairwise temporal concordance between censored and observed data, aiming to utilize the time interval before censoring as partially observed time-to-event labels for supervised learning. Although existing studies mostly employed ranking methods to pursue an ordering objective, contrastive methods which learn a discriminative embedding by having data contrast against each other, have not been explored thoroughly for survival analysis. Therefore, we propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework that utilizes survival durations from both censored and observed data to define temporal distinctiveness and construct negative sample pairs with adjustable hardness for contrastive learning. Specifically, we first use an ontological encoder and a sequential self-attention encoder to represent the longitudinal EHR data with rich contexts. Second, we design a temporal contrastive loss to capture varying survival durations in a supervised setting through a hardness-aware negative sampling mechanism. Last, we incorporate the contrastive task into the time-to-event predictive task with multiple loss components. We conduct extensive experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI), a critical and urgent medical condition. The effectiveness and explainability of the proposed model are validated through comprehensive quantitative and qualitative studies.


Jarrett Zeliff

An Analysis of Bluetooth Mesh Security Features in the Context of Secure Communications

When & Where:


Eaton Hall, Room 1

Committee Members:

Alexandru Bardas, Chair
Drew Davidson
Fengjun Li


Abstract

Significant developments in communication methods to help support at-risk populations have increased over the last 10 years. We view at-risk populations as a group of people present in environments where the use of infrastructure or electricity, including telecommunications, is censored and/or dangerous. Security features that accompany these communication mechanisms are essential to protect the confidentiality of its user base and the integrity and availability of the communication network.

In this work, we look at the feasibility of using Bluetooth Mesh as a communication network and analyze the security features that are inherent to the protocol. Through this analysis we determine the strengths and weaknesses of Bluetooth Mesh security features when used as a messaging medium for at risk populations and provide improvements to current shortcomings. Our analysis includes looking at the Bluetooth Mesh Networking Security Fundamentals as described by the Bluetooth Sig: Encryption and Authentication, Separation of Concerns, Area isolation, Key Refresh, Message Obfuscation, Replay Attack Protection, Trashcan Attack Protection, and Secure Device Provisioning.  We look at how each security feature is implemented and determine if these implementations are sufficient in protecting the users from various attack vectors. For example, we examined the Blue Mirror attack, a reflection attack during the provisioning process which leads to the compromise of network keys, while also assessing the under-researched key refresh mechanism. We propose a mechanism to address Blue-Mirror-oriented attacks with the goal of creating a more secure provisioning process.  To analyze the key refresh mechanism, we implemented our own full-fledged Bluetooth Mesh network and implemented a key refresh mechanism. Through this we form an assessment of the throughput, range, and impacts of a key refresh in both lab and field environments that demonstrate the suitability of our solution as a secure communication method.


Daniel Johnson

Probability-Aware Selective Protection for Sparse Iterative Solvers

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Hongyang Sun, Chair
Perry Alexander
Zijun Yao


Abstract

With the increasing scale of high-performance computing (HPC) systems, transient bit-flip errors are now more likely than ever, posing a threat to long-running scientific applications. A substantial portion of these applications involve the simulation of partial differential equations (PDEs) modeling physical processes over discretized spatial and temporal domains, with some requiring the solving of sparse linear systems. While these applications are often paired with system-level application-agnostic resilience techniques such as checkpointing and replication, the utilization of these techniques imposes significant overhead. In this work, we present a probability-aware framework that produces low-overhead selective protection schemes for the widely used Preconditioned Conjugate Gradient (PCG) method, whose performance can heavily degrade due to error propagation through the sparse matrix-vector multiplication (SpMV) operation. Through the use of a straightforward mathematical model and an optimized machine learning model, our selective protection schemes incorporate error probability to protect only certain crucial operations. An experimental evaluation using 15 matrices from the SuiteSparse Matrix Collection demonstrates that our protection schemes effectively reduce resilience overheads, often outperforming or matching both baseline and established protection schemes across all error probabilities.


Javaria Ahmad

Discovering Privacy Compliance Issues in IoT Apps and Alexa Skills Using AI and Presenting a Mechanism for Enforcing Privacy Compliance

When & Where:


LEEP2, Room 2425

Committee Members:

Bo Luo, Chair
Alex Bardas
Tamzidul Hoque
Fengjun Li
Michael Zhuo Wang

Abstract

The growth of IoT and voice assistant (VA) apps poses increasing concerns about sensitive data leaks. While privacy policies are required to describe how these apps use private user data (i.e., data practice), problems such as missing, inaccurate, and inconsistent policies have been repeatedly reported. Therefore, it is important to assess the actual data practice in apps and identify the potential gaps between the actual and declared data usage. We find that app stores lack in regulating the compliance between the app practices and their declaration, so we use AI to discover the compliance issues in these apps to assist the regulators and developers. For VA apps, we also develop a mechanism to enforce the compliance using AI. In this work, we conduct a measurement study using our framework called IoTPrivComp, which applies an automated analysis of IoT apps’ code and privacy policies to identify compliance gaps. We collect 1,489 IoT apps with English privacy policies from the Play Store. IoTPrivComp detects 532 apps with sensitive external data flows, among which 408 (76.7%) apps have undisclosed data leaks. Moreover, 63.4% of the data flows that involve health and wellness data are inconsistent with the practices disclosed in the apps’ privacy policies. Next, we focus on the compliance issues in skills. VAs, such as Amazon Alexa, are integrated with numerous devices in homes and cars to process user requests using apps called skills. With their growing popularity, VAs also pose serious privacy concerns. Sensitive user data captured by VAs may be transmitted to third-party skills without users’ consent or knowledge about how their data is processed. Privacy policies are a standard medium to inform the users of the data practices performed by the skills. However, privacy policy compliance verification of such skills is challenging, since the source code is controlled by the skill developers, who can make arbitrary changes to the behaviors of the skill without being audited; hence, conventional defense mechanisms using static/dynamic code analysis can be easily escaped. We present Eunomia, the first real-time privacy compliance firewall for Alexa Skills. As the skills interact with the users, Eunomia monitors their actions by hijacking and examining the communications from the skills to the users, and validates them against the published privacy policies that are parsed using a BERT-based policy analysis module. When non-compliant skill behaviors are detected, Eunomia stops the interaction and warns the user. We evaluate Eunomia with 55,898 skills on Amazon skills store to demonstrate its effectiveness and to provide a privacy compliance landscape of Alexa skills.


Xiangyu Chen

Toward Efficient Deep Learning for Computer Vision Applications

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Cuncong Zhong, Chair
Prasad Kulkarni
Bo Luo
Fengjun Li
Hongguo Xu

Abstract

Deep learning leads the performance in many areas of computer vision. However, after a decade of research, it tends to require larger datasets and more complex models, leading to heightened resource consumption across all fronts. Regrettably, meeting these requirements proves challenging in many real-life scenarios. First, both data collection and labeling processes entail substantial labor and time investments. This challenge becomes especially pronounced in domains such as medicine, where identifying rare diseases demands meticulous data curation. Secondly, the large size of state-of-the-art models, such as ViT, Stable Diffusion, and ConvNext, hinders their deployment on resource-constrained platforms like mobile devices. Research indicates pervasive redundancies within current neural network structures, exacerbating the issue. Lastly, even with ample datasets and optimized models, the time required for training and inference remains prohibitive in certain contexts. Consequently, there is a burgeoning interest among researchers in exploring avenues for efficient artificial intelligence.

This study endeavors to delve into various facets of efficiency within computer vision, including data efficiency, model efficiency, as well as training and inference efficiency. The data efficiency is improved from the perspective of increasing information brought by given image inputs and reducing redundancies of RGB image formats. To achieve this, we propose to integrate both spatial and frequency representations to finetune the classifier. Additionally, we propose explicitly increasing the input information density in the frequency domain by deleting unimportant frequency channels. For model efficiency, we scrutinize the redundancies present in widely used vision transformers. Our investigation reveals that trivial attention in their attention modules covers useful non-trivial attention due to its large amount. We propose mitigating the impact of accumulated trivial attention weights. To increase training efficiency, we propose SuperLoRA, a generation of LoRA adapter, to fine-tune pretrained models with few iterations and extremely-low parameters. Finally, a model simplification pipeline is proposed to further reduce inference time on mobile devices. By addressing these challenges, we aim to advance the practicality and performance of computer vision systems in real-world applications.


Krushi Patel

Image Classification & Segmentation based on Enhanced CNN and Transformer Networks

When & Where:


Zoom Defense, please email jgrisafe@ku.edu for defense link.

Committee Members:

Fengjun Li, Chair
Prasad Kulkarni
Bo Luo
Cuncong Zhong
Xinmai Yang

Abstract

Convolutional Neural Networks (CNNs) have significantly enhanced performance across various computer vision tasks such as image recognition and segmentation, owing to their robust representation capabilities. To further boost CNN performance, a self-attention module is integrated after each network layer. Transformer-based models, which leverage a multi-head self-attention module as their core component, have recently demonstrated outstanding performance. However, several challenges persist, including the limitation to class-specific channels in CNNs, the constrained receptive field in local transformers, and the incorporation of redundant features and the absence of multi-scale features in U-Net type segmentation architectures.

In our study, we propose new strategies to tackle these challenges. (1) We propose a novel channel-based self-attention module to diversify the focus more on the discriminative and significant channels, and the module can be embedded at the end of any backbone network for image classification. (2) To mitigate noise introduced by shallow encoder layers in U-Net architectures, we substitute skip connections with an Adaptive Global Context Module (AGCM). Additionally, we introduce the Semantic Feature Enhancement Module (SFEM) to enhance multi-scale features in polyp segmentation. (3) We introduce a Multi-scaled Overlapped Attention (MOA) mechanism within local transformer-based networks for image classification, facilitating the establishment of long-range dependencies and initiation of neighborhood window communication. (4) We propose a pioneering Fuzzy Attention Module designed to prioritize challenging pixels, thereby augmenting polyp segmentation performance. (5) We develop a novel dense attention gate module that aggregates features from all preceding layers to compute attention scores, refining global features in polyp segmentation tasks. Moreover, we design a new multi-layer horizontally extended decoder architecture to enhance local feature refinement in polyp segmentation.


Matthew Heintzelman

Spatially Diverse Radar Techniques - Emission Optimization and Enhanced Receive Processing

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Shannon Blunt, Chair
Christopher Allen
Patrick McCormick
James Stiles
Zsolt Talata

Abstract

Radar systems perform 3 basic tasks: search/detection, tracking, and imaging. Traditionally, varied operational and hardware requirements have compartmentalized these functions to separate and specialized radars, which may communicate actionable information between them. Expedited by the growth in computational capabilities modeled by Moore’s law, next-generation radars will be sophisticated, multi-function systems comprising generalized and reprogrammable subsystems. The advance of fully Digital Array Radars (DAR) has enabled the implementation of highly directive phased arrays that can scan, detect, and track scatterers through a volume-of-interest. As a strategical converse, DAR technology has also enabled Multiple-Input Multiple-Output (MIMO) radar systems that seek to illuminate all space on transmit, while forming separate but simultaneous, directive beams on receive.

Waveform diversity has been repeatedly proven to enhance radar operation through added Degrees-of-Freedom (DoF) that can be leveraged to expand dynamic range, provide ambiguity resolution, and improve parameter estimation.  In particular, diversity among the DAR’s transmitting elements provides flexibility to the emission, allowing simultaneous multi-function capability. By precise design of the emission, the DAR can utilize the operationally-continuous trade-space between a fully coherent phased array and a fully incoherent MIMO system. This flexibility could enable the optimal management of the radar’s resources, where Signal-to-Noise Ratio (SNR) would be traded for robustness in detection, measurement capability, and tracking.

Waveform diversity is herein leveraged as the predominant enabling technology for multi-function radar emission design. Three methods of emission optimization are considered to design distinct beams in space and frequency, according to classical error minimization techniques. First, a gradient-based optimization of Space-Frequency Template Error (SFTE) is implemented on a high-fidelity model for a wideband array’s far-field emission. Second, a more efficient optimization is considered, based on SFTE for narrowband arrays. Finally, optimization via alternating projections is shown to provide rapidly reconfigurable transmit patterns. To improve the dynamic range observed for MIMO radars using pulse-agile quasi-orthogonal waveforms, a pulse-compression model is derived, and experimentally validated, that manages to suppress both autocorrelation sidelobes and multi-transmitter-induced cross-correlation. Several modifications to the demonstrated algorithms are proposed to refine implementation, enhance performance, and reflect real-world application to the degree that numerical simulations can.


Anna Fritz

A Formally Verified Infrastructure for Negotiating Remote Attestation Protocols

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Perry Alexander, Chair
Alex Bardas
Drew Davidson
Fengjun Li
Emily Witt

Abstract

Semantic remote attestation is the process of gathering and appraising evidence to establish trust in a remote system. Remote attestation occurs at the request of an appraiser or relying party and proceeds with a target system executing an attestation protocol that invokes attestation services in a specific order to generate and bundle evidence. An appraiser may then evaluate the generated evidence to establish trust in the target's state.  In this current framework, requested measurement operations must be provisioned by a knowledgeable system user who may fail to consider situational demands which potentially impact the desired measurement operation. To solve this problem, we introduce Attestation Protocol Negotiation or the process of establishing a mutually agreed upon protocol that satisfies the relying party's desire for comprehensive information and the target's desire for constrained disclosure.

    This research explores the formal modeling and verification of negotiation, introducing refinement and selection procedures to enable communicating peers to achieve their goals. First, we explore the formalization of refinement or the process by which a target generates executable protocols. Here we focus on a definition of system specifications through manifests, protocol sufficiency and soundness, policy representation, and the negotiation structure. By using our formal models to represent and verify negotiation's properties we can statically determine that a provably sound, sufficient, and executable protocol is produced. Next, we present a formalized model for protocol selection, introducing and proving a preorder over Copland remote attestation protocols to facilitate selection of the most adversary-constrained protocol. With this modeling, we prove selected protocols increase the difficulty of an active adversary. By addressing the target's capability to generate provably executable protocols and the ability to order these protocols, this methodology has the potential to revolutionize the attestation protocol provisioning process.


Arjun Dhage Ramachandra

Implementing object Detection for Real-World Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Cuncong Zhong


Abstract

 The advent of deep learning has enabled the development of powerful AI models that are being used in fields such as medicine, surveillance monitoring, optimizing manufacturing processes, allowing robots to navigate their environment, chatbots, and much more. These applications are only made possible because of the enormous research in the fields of Neural networks and deep learning. In this paper, I’ll be discussing a branch of Neural Networks called Convolution Neural Network (CNN), and how they are used for object detection tasks for detecting and classifying objects in an image. I’ll also discuss a popular object detection framework called Single Shot Multibox Detector (SSD) and implement it in my web application project which allows users to detect objects in images and search for images based on the presence of objects. The main aim of the project was to allow easy access to perform detections with a few clicks.