Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Zhaohui Wang

Enhancing Security and Privacy of IoT Systems: Uncovering and Resolving Cross-App Threats

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Fengjun Li, Chair
Alex Bardas
Drew Davidson
Bo Luo
Haiyang Chao

Abstract

The rapid growth of Internet of Things (IoT) technology has brought unprecedented convenience to our daily lives, enabling users to customize automation rules and develop IoT apps to meet their specific needs. However, as IoT devices interact with multiple apps across various platforms, users are exposed to complex security and privacy risks. Even interactions among seemingly harmless apps can introduce unforeseen security and privacy threats.

In this work, we introduce two innovative approaches to uncover and address these concealed threats in IoT environments. The first approach investigates hidden cross-app privacy leakage risks in IoT apps. These risks arise from cross-app chains that are formed among multiple seemingly benign IoT apps. Our analysis reveals that interactions between apps can expose sensitive information such as user identity, location, tracking data, and activity patterns. We quantify these privacy leaks by assigning probability scores to evaluate the risks based on inferences. Additionally, we provide a fine-grained categorization of privacy threats to generate detailed alerts, enabling users to better understand and address specific privacy risks. To systematically detect cross-app interference threats, we propose to apply principles of logical fallacies to formalize conflicts in rule interactions. We identify and categorize cross-app interference by examining relations between events in IoT apps. We define new risk metrics for evaluating the severity of these interferences and use optimization techniques to resolve interference threats efficiently. This approach ensures comprehensive coverage of cross-app interference, offering a systematic solution compared to the ad hoc methods used in previous research.

To enhance forensic capabilities within IoT, we integrate blockchain technology to create a secure, immutable framework for digital forensics. This framework enables the identification, tracing, storage, and analysis of forensic information to detect anomalous behavior. Furthermore, we developed a large-scale, manually verified, comprehensive dataset of real-world IoT apps. This clean and diverse benchmark dataset supports the development and validation of IoT security and privacy solutions. Each of these approaches has been evaluated using our dataset of real-world apps, collectively offering valuable insights and tools for enhancing IoT security and privacy against cross-app threats.


Manu Chaudhary

Utilizing Quantum Computing for Solving Multidimensional Partial Differential Equations

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Esam El-Araby, Chair
Perry Alexander
Tamzidul Hoque
Prasad Kulkarni
Tyrone Duncan

Abstract

Quantum computing has the potential to revolutionize computational problem-solving by leveraging the quantum mechanical phenomena of superposition and entanglement, which allows for processing a large amount of information simultaneously. This capability is significant in the numerical solution of complex and/or multidimensional partial differential equations (PDEs), which are fundamental to modeling various physical phenomena. There are currently many quantum techniques available for solving partial differential equations (PDEs), which are mainly based on variational quantum circuits. However, the existing quantum PDE solvers, particularly those based on variational quantum eigensolver (VQE) techniques, suffer from several limitations. These include low accuracy, high execution times, and low scalability on quantum simulators as well as on noisy intermediate-scale quantum (NISQ) devices, especially for multidimensional PDEs.

 In this work, we propose an efficient and scalable algorithm for solving multidimensional PDEs. We present two variants of our algorithm: the first leverages finite-difference method (FDM), classical-to-quantum (C2Q) encoding, and numerical instantiation, while the second employs FDM, C2Q, and column-by-column decomposition (CCD). Both variants are designed to enhance accuracy and scalability while reducing execution times. We have validated and evaluated our algorithm using the multidimensional Poisson equation as a case study. Our results demonstrate higher accuracy, higher scalability, and faster execution times compared to VQE-based solvers on noise-free and noisy quantum simulators from IBM. Additionally, we validated our approach on hardware emulators and actual quantum hardware, employing noise mitigation techniques. We will also focus on extending these techniques to PDEs relevant to computational fluid dynamics and financial modeling, further bridging the gap between theoretical quantum algorithms and practical applications.


Venkata Sai Krishna Chaitanya Addepalli

A Comprehensive Approach to Facial Emotion Recognition: Integrating Established Techniques with a Tailored Model

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

Facial emotion recognition has become a pivotal application of machine learning, enabling advancements in human-computer interaction, behavioral analysis, and mental health monitoring. Despite its potential, challenges such as data imbalance, variation in expressions, and noisy datasets often hinder accurate prediction.

 This project presents a novel approach to facial emotion recognition by integrating established techniques like data augmentation and regularization with a tailored convolutional neural network (CNN) architecture. Using the FER2013 dataset, the study explores the impact of incremental architectural improvements, optimized hyperparameters, and dropout layers to enhance model performance.

 The proposed model effectively addresses issues related to data imbalance and overfitting while achieving enhanced accuracy and precision in emotion classification. The study underscores the importance of feature extraction through convolutional layers and optimized fully connected networks for efficient emotion recognition. The results demonstrate improvements in generalization, setting a foundation for future real-time applications in diverse fields. 


Ye Wang

Deceptive Signals: Unveiling and Countering Sensor Spoofing Attacks on Cyber Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Fengjun Li, Chair
Drew Davidson
Rongqing Hui
Bo Luo
Haiyang Chao

Abstract

In modern computer systems, sensors play a critical role in enabling a wide range of functionalities, from navigation in autonomous vehicles to environmental monitoring in smart homes. Acting as an interface between physical and digital worlds, sensors collect data to drive automated functionalities and decision-making. However, this reliance on sensor data introduces significant potential vulnerabilities, leading to various physical, sensor-enabled attacks such as spoofing, tampering, and signal injection. Sensor spoofing attacks, where adversaries manipulate sensor input or inject false data into target systems, pose serious risks to system security and privacy.

In this work, we have developed two novel sensor spoofing attack methods that significantly enhance both efficacy and practicality. The first method employs physical signals that are imperceptible to humans but detectable by sensors. Specifically, we target deep learning based facial recognition systems using infrared lasers. By leveraging advanced laser modeling, simulation-guided targeting, and real-time physical adjustments, our infrared laser-based physical adversarial attack achieves high success rates with practical real-time guarantees, surpassing the limitations of prior physical perturbation attacks. The second method embeds physical signals, which are inherently present in the system, into legitimate patterns. In particular, we integrate trigger signals into standard operational patterns of actuators on mobile devices to construct remote logic bombs, which are shown to be able to evade all existing detection mechanisms. Achieving a zero false-trigger rate with high success rates, this novel sensor bomb is highly effective and stealthy.

Our study on emerging sensor-based threats highlights the urgent need for comprehensive defenses against sensor spoofing. Along this direction, we design and investigate two defense strategies to mitigate these threats. The first strategy involves filtering out physical signals identified as potential attack vectors. The second strategy is to leverage beneficial physical signals to obfuscate malicious patterns and reinforce data integrity. For example, side channels targeting the same sensor can be used to introduce cover signals that prevent information leakage, while environment-based physical signals serve as signatures to authenticate data. Together, these strategies form a comprehensive defense framework that filters harmful sensor signals and utilizes beneficial ones, significantly enhancing the overall security of cyber systems.


SM Ishraq-Ul Islam

Quantum Circuit Synthesis using Genetic Algorithms Combined with Fuzzy Logic

When & Where:


LEEP2, Room 1420

Committee Members:

Esam El-Araby, Chair
Tamzidul Hoque
Prasad Kulkarni


Abstract

  Quantum computing emerges as a promising direction for high-performance computing in the post-Moore era. Leveraging quantum mechanical properties, quantum devices can theoretically provide significant speedup over classical computers in certain problem domains. Quantum algorithms are typically expressed as quantum circuits composed of quantum gates, or as unitary matrices. Execution of quantum algorithms on physical devices requires translation to machine-compatible circuits -- a process referred to as quantum compilation or synthesis. 

    Quantum synthesis is a challenging problem. Physical quantum devices support a limited number of native basis gates, requiring synthesized circuits to be composed of only these gates. Moreover, quantum devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits on the device.

    Current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints, through their gate errors and high susceptibility to noise. NISQ devices are vulnerable to errors during gate application and their short decoherence times leads to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to have a low number of gates to reduce gate errors, and short execution times to avoid qubit decoherence. 

   The problem of synthesizing device-compatible quantum circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based compilation techniques, which are able to produce approximations of the desired algorithm to a required degree of precision. In this work, we investigate using Genetic Algorithms (GAs) -- a proven gradient-free optimization technique based on natural selection -- for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality of our proposed quantum synthesis method.


Sravan Reddy Chintareddy

Combating Spectrum Crunch with Efficient Machine-Learning Based Spectrum Access and Harnessing High-frequency Bands for Next-G Wireless Networks

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Erik Perrins
Dongjie Wang
Shawn Keshmiri

Abstract

There is an increasing trend in the number of wireless devices that is now already over 14 billion and is expected to grow to 40 billion devices by 2030. In addition, we are witnessing an unprecedented proliferation of applications and technologies with wireless connectivity requirements such as unmanned aerial vehicles, connected health, and radars for autonomous vehicles. The advent of new wireless technologies and devices will only worsen the current spectrum crunch that service providers and wireless operators are already experiencing. In this PhD study, we address these challenges through the following research thrusts, in which we consider two emerging applications aimed at advancing spectrum efficiency and high-frequency connectivity solutions.

 

First, we focus on effectively utilizing the existing spectrum resources for emerging applications such as networked UAVs operating within the Unmanned Traffic Management (UTM) system. In this thrust, we develop a coexistence framework for UAVs to share spectrum with traditional cellular networks by using machine learning (ML) techniques so that networked UAVs act as secondary users without interfering with primary users. We propose federated learning (FL) and reinforcement learning (RL) solutions to establish a collaborative spectrum sensing and dynamic spectrum allocation framework for networked UAVs. In the second part, we explore the potential of millimeter-wave (mmWave) and terahertz (THz) frequency bands for high-speed data transmission in urban settings. Specifically, we investigate THz-based midhaul links for 5G networks, where a network's central units (CUs) connect to distributed units (DUs). Through numerical analysis, we assess the feasibility of using 140 GHz links and demonstrate the merits of high-frequency bands to support high data rates in midhaul networks for future urban communications infrastructure. Overall, this research is aimed at establishing frameworks and methodologies that contribute toward the sustainable growth and evolution of wireless connectivity.


Arnab Mukherjee

Attention-Based Solutions for Occlusion Challenges in Person Tracking

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Sumaiya Shomaji
Hongyang Sun
Jian Li

Abstract

Person tracking and association is a complex task in computer vision applications. Even with a powerful detector, a highly accurate association algorithm is necessary to match and track the correct person across all frames. This method has numerous applications in surveillance, and its complexity increases with the number of detected objects and their movements across frames. A significant challenge in person tracking is occlusion, which occurs when an individual being tracked is partially or fully blocked by another object or person. This can make it difficult for the tracking system to maintain the identity of the individual and track them effectively.

In this research, we propose a solution to the occlusion problem by utilizing an occlusion-aware spatial attention transformer. We have divided the entire tracking association process into two scenarios: occlusion and no-occlusion. When a detected person with a specific ID suddenly disappears from a frame for a certain period, we employ advanced methods such as Detector Integration and Pose Estimation to ensure the correct association. Additionally, we implement a spatial attention transformer to differentiate these occluded detections, transform them, and then match them with the correct individual using the Cosine Similarity Metric.

The features extracted from the attention transformer provide a robust baseline for detecting people, enhancing the algorithms adaptability and addressing key challenges associated with existing approaches. This improved method reduces the number of misidentifications and instances of ID switching while also enhancing tracking accuracy and precision.


Agraj Magotra

Data-Driven Insights into Sustainability: An Artificial Intelligence (AI) Powered Analysis of ESG Practices in the Textile and Apparel Industry

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Prasad Kulkarni
Zijun Yao


Abstract

The global textile and apparel (T&A) industry is under growing scrutiny for its substantial environmental and social impact, producing 92 million tons of waste annually and contributing to 20% of global water pollution. In Bangladesh, one of the world's largest apparel exporters, the integration of Environmental, Social, and Governance (ESG) practices is critical to meet international sustainability standards and maintain global competitiveness. This master's study leverages Artificial Intelligence (AI) and Machine Learning (ML) methodologies to comprehensively analyze unstructured corporate data related to ESG practices among LEED-certified Bangladeshi T&A factories. 

Our study employs advanced techniques, including Web Scraping, Natural Language Processing (NLP), and Topic Modeling, to extract and analyze sustainability-related information from factory websites. We develop a robust ML framework that utilizes Non-Negative Matrix Factorization (NMF) for topic extraction and a Random Forest classifier for ESG category prediction, achieving an 86% classification accuracy. The study uncovers four key ESG themes: Environmental Sustainability, Social : Workplace Safety and Compliance, Social: Education and Community Programs, and Governance. The analysis reveals that 46% of factories prioritize environmental initiatives, such as energy conservation and waste management, while 44% emphasize social aspects, including workplace safety and education. Governance practices are significantly underrepresented, with only 10% of companies addressing ethical governance, healthcare provisions and employee welfare.

To deepen our understanding of the ESG themes, we conducted a Centrality Analysis to identify the most influential keywords within each category, using measures such as degree, closeness, and eigenvector centrality. Furthermore, our analysis reveals that higher certification levels, like Platinum, are associated with a more balanced emphasis on environmental, social, and governance practices, while lower levels focus primarily on environmental efforts. These insights highlight key areas where the industry can improve and inform targeted strategies for enhancing ESG practices. Overall, this ML framework provides a data-driven, scalable approach for analyzing unstructured corporate data and promoting sustainability in Bangladesh’s T&A sector, offering actionable recommendations for industry stakeholders, policymakers, and global brands committed to responsible sourcing.


Samyoga Bhattarai

‘Pro-ID: A Secure Face Recognition System using Locality Sensitive Hashing to Protect Human ID’

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

Face recognition systems are widely used in various applications, from mobile banking apps to personal smartphones. However, these systems often store biometric templates in raw form, posing significant security and privacy risks. Pro-ID addresses this vulnerability by incorporating SimHash, an algorithm of Locality Sensitive Hashing (LSH), to create secure and irreversible hash codes of facial feature vectors. Unlike traditional methods that leave raw data exposed to potential breaches, SimHash transforms the feature space into high-dimensional hash codes, safeguarding user identity while preserving system functionality. 

The proposed system creates a balance between two aspects: security and the system’s performance. Additionally, the system is designed to resist common attacks, including brute force and template inversion, ensuring that even if the hashed templates are exposed, the original biometric data cannot be reconstructed.  

A key challenge addressed in this project is minimizing the trade-off between security and performance. Extensive evaluations demonstrate that the proposed method maintains competitive accuracy rates comparable to traditional face recognition systems while significantly enhancing security metrics such as irreversibility, unlinkability, and revocability. This innovative approach contributes to advancing the reliability and trustworthiness of biometric systems, providing a secure framework for applications in face recognition systems. 


Shalmoli Ghosh

High-Power Fabry-Perot Quantum-Well Laser Diodes for Application in Multi-Channel Coherent Optical Communication Systems

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rongqing Hui , Chair
Shannon Blunt
Jim Stiles


Abstract

Wavelength Division Multiplexing (WDM) is essential for managing rapid network traffic growth in fiber optic systems. Each WDM channel demands a narrow-linewidth, frequency-stabilized laser diode, leading to complexity and increased energy consumption. Multi-wavelength laser sources, generating optical frequency combs (OFC), offer an attractive solution, enabling a single laser diode to provide numerous equally spaced spectral lines for enhanced bandwidth efficiency.

Quantum-dot and quantum-dash OFCs provide phase-synchronized lines with low relative intensity noise (RIN), while Quantum Well (QW) OFCs offer higher power efficiency, but they have higher RIN in the low frequency region of up to 2 GHz. However, both quantum-dot/dash and QW based OFCs, individual spectral lines exhibit high phase noise, limiting coherent detection. Output power levels of these OFCs range between 1-20 mW where the power of each spectral line is typically less than -5 dBm. Due to this requirement, these OFCs require excessive optical amplification, also they possess relatively broad spectral linewidths of each spectral line, due to the inverse relationship between optical power and linewidth as per the Schawlow-Townes formula. This constraint hampers their applicability in coherent detection systems, highlighting a challenge for achieving high-performance optical communication.

In this work, coherent system application of a single-section Quantum-Well Fabry-Perot (FP) laser diode is demonstrated. This laser delivers over 120 mW optical power at the fiber pigtail with a mode spacing of 36.14 GHz. In an experimental setup, 20 spectral lines from a single laser transmitter carry 30 GBaud 16-QAM signals over 78.3 km single-mode fiber, achieving significant data transmission rates. With the potential to support a transmission capacity of 2.15 Tb/s (4.3 Tb/s for dual polarization) per transmitter, including Forward Error Correction (FEC) and maintenance overhead, it offers a promising solution for meeting the escalating demands of modern network traffic efficiently.


Anissa Khan

Privacy Preserving Biometric Matching

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Perry Alexander, Chair
Prasad Kulkarni
Fengjun Li


Abstract

Biometric matching is a process by which distinct features are used to identify an individual. Doing so privately is important because biometric data, such as fingerprints or facial features, is not something that can be easily changed or updated if put at risk. In this study, we perform a piece of the biometric matching process in a privacy preserving manner by using secure multiparty computation (SMPC). Using SMPC allows the identifying biological data, called a template, to remain stored by the data owner during the matching process. This provides security guarantees to the biological data while it is in use and therefore reduces the chances the data is stolen. In this study, we find that performing biometric matching using SMPC is just as accurate as performing the same match in plaintext.

 


Bryan Richlinski

Prioritize Program Diversity: Enumerative Synthesis with Entropy Ordering

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Sankha Guria, Chair
Perry Alexander
Drew Davidson
Jennifer Lohoefener

Abstract

Program synthesis is a popular way to create a correct-by-construction program from a user-provided specification. Term enumeration is a leading technique to systematically explore the space of programs by generating terms from a formal grammar. These terms are treated as candidate programs which are tested/verified against the specification for correctness. In order to prioritize candidates more likely to satisfy the specification, enumeration is often ordered by program size or other domain-specific heuristics. However, domain-specific heuristics require expert knowledge, and enumeration by size often leads to terms comprised of frequently repeating symbols that are less likely to satisfy a specification. In this thesis, we build a heuristic that prioritizes term enumeration based on variability of individual symbols in the program, i.e., information entropy of the program. We use this heuristic to order programs in both top-down and bottom-up enumeration. We evaluated our work on a subset of the PBE-String track of the 2017 SyGuS competition benchmarks and compared against size-based enumeration. In top-down enumeration, our entropy heuristic shortens runtime in ~56% of cases and tests fewer programs in ~80% before finding a valid solution. For bottom-up enumeration, our entropy heuristic improves the number of enumerated programs in ~30% of cases before finding a valid solution, without improving the runtime. Our findings suggest that using entropy to prioritize program enumeration is a promising step forward for faster program synthesis.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

 

This research provides a deep dive into the npm-centric software supply chain, exploring various facets and phenomena that impact the security of this software supply chain. Such factors include (i) hidden code clones--which obscure provenance and can stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts open-source development practices, and (v) package compromise via malicious updates. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Jagadeesh Sai Dokku

Intelligent Chat Bot for KU Website: Automated Query Response and Resource Navigation

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

This project introduces an intelligent chatbot designed to improve user experience on our university website by providing instant, automated responses to common inquiries. Navigating a university website can be challenging for students, applicants, and visitors who seek quick information about admissions, campus services, events, and more. To address this challenge, we developed a chatbot that simulates human conversation using Natural Language Processing (NLP), allowing users to find information more efficiently. The chatbot is powered by a Bidirectional Long Short-Term Memory (BiLSTM) model, an architecture well-suited for understanding complex sentence structures. This model captures contextual information from both directions in a sentence, enabling it to identify user intent with high accuracy. We trained the chatbot on a dataset of intent-labeled queries, enabling it to recognize specific intentions such as asking about campus facilities, academic programs, or event schedules. The NLP pipeline includes steps like tokenization, lemmatization, and vectorization. Tokenization and lemmatization prepare the text by breaking it into manageable units and standardizing word forms, making it easier for the model to recognize similar word patterns. The vectorization process then translates this processed text into numerical data that the model can interpret. Flask is used to manage the backend, allowing seamless communication between the user interface and the BiLSTM model. When a user submits a query, Flask routes the input to the model, processes the prediction, and delivers the appropriate response back to the user interface. This chatbot demonstrates a successful application of NLP in creating interactive, efficient, and user-friendly solutions. By automating responses, it reduces reliance on manual support and ensures users can access relevant information at any time. This project highlights how intelligent chatbots can transform the way users interact with university websites, offering a faster and more engaging experience.

 


Anahita Memar

Optimizing Protein Particle Classification: A Study on Smoothing Techniques and Model Performance

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hossein Saiedian
Prajna Dhar


Abstract

This thesis investigates the impact of smoothing techniques on enhancing classification accuracy in protein particle datasets, focusing on both binary and multi-class configurations across three datasets. By applying methods including Averaging-Based Smoothing, Moving Average, Exponential Smoothing, Savitzky-Golay, and Kalman Smoothing, we sought to improve performance in Random Forest, Decision Tree, and Neural Network models. Initial baseline accuracies revealed the complexity of multi-class separability, while clustering analyses provided valuable insights into class similarities and distinctions, guiding our interpretation of classification challenges.

These results indicate that Averaging-Based Smoothing and Moving Average techniques are particularly effective in enhancing classification accuracy, especially in configurations with marked differences in surfactant conditions. Feature importance analysis identified critical metrics, such as IntMean and IntMax, which played a significant role in distinguishing classes. Cross-validation validated the robustness of our models, with Random Forest and Neural Network consistently outperforming others in binary tasks and showing promising adaptability in multi-class classification. This study not only highlights the efficacy of smoothing techniques for improving classification in protein particle analysis but also offers a foundational approach for future research in biopharmaceutical data processing and analysis.


Past Defense Notices

Dates

Christian Jones

Robust and Efficient Structure-Based Radar Receive Processing

When & Where:


Nichols Hall, Room 129 (Apollo Auditorium)

Committee Members:

Shannon Blunt, Chair
Chris Allen
Suzanne Shontz
James Stiles
Zsolt Talata

Abstract

Legacy radar systems largely rely on repeated emission of a linear frequency modulated (LFM) or chirp waveform to ascertain scattering information from an environment. The prevalence of these chirp waveforms largely stems from their simplicity to generate, process, and the general robustness they provide towards hardware effects. However, this traditional design philosophy often lacks the flexibility and dimensionality needed to address the dynamic “complexification” of the modern radio frequency (RF) environment or achieve current operational requirements where unprecedented degrees of sensitivity, maneuverability, and adaptability are necessary.

Over the last couple of decades analog-to-digital and digital-to-analog technologies have advanced exponentially, resulting in tremendous design degrees of freedom and arbitrary waveform generation (AWG) capabilities that enable sophisticated design of emissions to better suit operational requirements. However, radar systems typically require high powered amplifiers (HPA) to contend with the two-way propagation. Thus, transmitter-amenable waveforms are effectively constrained to be both spectrally contained and constant amplitude, resulting in a non-convex NP-hard design problem.

While determining the global optimal waveform can be intractable for even modest time-bandwidth products (TB), locally optimal transmitter-amenable solutions that are “good enough” are often readily available. However, traditional matched filtering may not satisfy operational requirements for these sub-optimal emissions. Using knowledge of the transmitter-receiver chain, a discrete linear model can be formed to express the relationship between observed measurements and the complex scattering of the environment. This structured representation then enables more sophisticated least-square and adaptive estimation techniques to better satisfy operational needs, improve estimate fidelity, and extend dynamic range.

However, radar dimensionality can be enormous and brute force implementations of these techniques may have unwieldy computational burden on even cutting-edge hardware. Additionally, a discrete linear representation is fundamentally an approximation of the dynamic continuous physical reality and model errors may induce bias, create false detections, and limit dynamic range. As such, these structure-based approaches must be both computationally efficient and robust to reality.

Here several generalized discrete radar receive models and structure-based estimation schemes are introduced. Modifications and alternative solutions are then proposed to improve estimate fidelity, reduce computational complexity, and provide further robustness to model uncertainty.


Shawn Robertson

A secure framework for at risk populations in austere environments utilizing Bluetooth Mesh communications

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li
Bo Luo
Huazhen Fang

Abstract

Austere environments are defined by the US Military as those regularly experiencing significant environmental hazards, have limited access to reliable electricity, or require prolonged use of body armor or chemical protection equipment.  We propose that in modern society, this definition can extend also to telecommunications infrastructure, areas where an active adversary controls the telecommunications infrastructure and works against the people such as protest areas in Iran, Russia, and China or areas experiencing conflict and war such as Eastern Ukraine.  People in these austere environments need basic text communications and the ability to share simple media like low resolution pictures.  This communication is complicated by the adversaries’ capabilities as a potential nation-state actor. To address this, Low Earth Orbit satellite clusters, like Starlink, can be used to exfiltrate communications completely independent of local infrastructure.  This, however, creates another issue as these satellite ground terminals are not inherently designed to support many users over a large area.  Traditional means of extending this connectivity create both power and security concerns.  We propose that Bluetooth Mesh can be used to extend connectivity and provide communications. 

Bluetooth Mesh provides a low signal footprint to reduce the risk of detection, blends into existent signals within the 2.4ghz spectrum, has security aspects in the specification, and devices can utilize small batteries maintaining a covert form factor.  To realize this security enhancements must be made to both the provisioning process of the Bluetooth Mesh network and a key management scheme that ensures the regular and secure changing of keys either in response to an adversary’s action or as a prevention of an adversary’s action must be implemented.  We propose a provisioning process using whitelists on both provisioner and device and uses attestation for passwords allowing devices to be provisioned on deployment to protect the at-risk population and prevent BlueMirror attacks.  We also propose, implement, and measure the impact of an automated key exchange that meets the Bluetooth Mesh 3 phase specification.  Our experimentation, in a field environment, shows that Bluetooth Mesh has the throughput, reliability and security to meet the requirements of at-risk populations in austere environments. 


Venkata Mounika Keerthi

Evaluating Dynamic Resource Management for Bulk Synchronous Parallel Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Hongyang Sun, Chair
David Johnson
Prasad Kulkarni


Abstract

Bulk Synchronous Parallel (BSP) applications comprise distributed tasks that synchronize at periodic intervals, known as supersteps. Efficient resource management is critical for the performance of BSP applications, especially when deployed on multi-tenant cloud platforms. This project evaluates and extends some existing resource management algorithms for BSP applications, while focusing on dynamic schedulers to mitigate stragglers under variable workloads. In particular, a Dynamic Window algorithm is implemented to compute resource configurations optimized over a customizable timeframe by considering workload variability. The algorithm applies a discount factor prioritizing improvements in earlier supersteps to account for increasing prediction errors in future supersteps. It represents a more flexible approach compared to the Static Window algorithm that recomputes the resource configuration after a fixed number of supersteps. A comparative evaluation of the Dynamic Window algorithm against existing techniques, including the Static Window algorithm, a Dynamic Model Predictive Control (MPC) algorithm, and a Reinforcement Learning (RL) based algorithm, is performed to quantify potential reductions in application duration resulting from enhanced superstep-level customization. Further evaluations also show the impacts of window size and checkpoint (reconfiguration) cost on these algorithms, gaining insights into their dynamics and performance trade-offs.

Degree: MS Project Defense (CS)


Sohan Chandra

Predicting inorganic nitrogen content in the soil using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Taejoon Kim, Chair
Prasad Kulkarni
Cuncong Zhong


Abstract

This ground-breaking project addresses a critical issue in crop production: precisely determining plant-available inorganic nitrogen (IN) in soil to optimize fertilization strategies. Current methodologies frequently struggle with the complexities of determining a soil's nitrogen content, resorting to approximations and labor-intensive soil testing procedures that can lead to the pitfalls of under or over-fertilization, endangering agricultural productivity. Recognizing the scarcity of historical inorganic nitrogen (IN) data, this solution employs a novel approach that employs Generative Adversarial Networks (GANs) to generate statistically similar inorganic nitrogen (IN) data. 

 

This synthetic data set works in tandem with data from the Decision Support System for Agrotechnology Transfer (DSSAT). To address the data's inherent time-series nature, we use the power of Long Short-Term Memory (LSTM) neural networks in our predictive model. The resulting model is a sophisticated and accurate tool that can provide reliable estimates without extensive soil testing. This not only ensures precision in nutrient management but is also a cost-effective and dependable solution for crop production optimization. 


Thomas Woodruff

Model Predictive Control of Nonlinear Latent Force Models

When & Where:


M2SEC, Room G535

Committee Members:

Jim Stiles, Chair
Michael Branicky
Heechul Yun


Abstract

Model Predictive Control (MPC) has emerged as a potent approach for controlling nonlinear systems in the robotics field and various other engineering domains. Its efficacy lies in its capacity to predictively optimize system behavior while accommodating state and input constraints. Although MPC typically relies on precise dynamic models to be effective, real-world dynamic systems often harbor uncertainties. Ignoring these uncertainties can lead to performance degradation or even failure in MPC.

Nonlinear latent force models, integrating latent uncertainties characterized as Gaussian processes, hold promise for effectively representing nonlinear uncertain systems. Specifically, these models incorporate the state-space representation of a Gaussian process into known nonlinear dynamics, providing the ability to simultaneously predict future states and uncertainties.

This thesis delves into the application of MPC to nonlinear latent force models, aiming to control nonlinear uncertain systems. We formulate a stochastic MPC problem and, to address the ensuing receding-horizon stochastic optimization problem, introduce a scenario-based approach for a deterministic approximation. The resulting scenario-based approach is assessed through simulation studies centered on the motion planning of an autonomous vehicle. The simulations demonstrate the controller's adeptness in managing constraints and consistently mitigating the effects of disturbances. This proposed approach holds promise for various robotics applications and beyond.


Sai Soujanya Ambati

BERT-NEXT: Exploring Contextual Sentence Understanding

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hongyang Sun



Abstract

The advent of advanced natural language processing (NLP) techniques has revolutionized the way we handle textual data. This project presents the implementation of exploring contextual sentence understanding on the Quora Insincere Questions dataset using the pretrained BERT architecture. In this study, we explore the application of BERT, a bidirectional transformer model, for text classification tasks. The goal is to classify if a question contains hateful, disrespectful or toxic content. BERT represents the state-of-the-art in language representation models and has shown strong performance on various natural language processing tasks. In this project, the pretrained BERT base model is fine-tuned on a sample of the Quora dataset for next sentence prediction. Results show that with just 1% of the data (around 13,000 examples), the fine-tuned model achieves over 90% validation accuracy in identifying insincere questions after 4 epochs of training. This demonstrates the effectiveness of leveraging BERT for text classification tasks with minimal labeled data requirements. Being able to automatically detect toxic, hateful or disrespectful content is important to maintain healthy online discussions. However, the nuances of human language make this a challenging natural language processing problem. Insincere questions may contain offensive language, hate speech, or misinformation, making their identification crucial for maintaining a positive and safe online environment. In this project, we explore using the pretrained Bidirectional Encoder Representations from Transformers (BERT) model for next sentence prediction on the task of identifying insincere questions.


Swathi Koyada

Feature balancing of demographic data using SMOTE

When & Where:


Zoom Meeting, please email jgrisafe@ku.edu for defense link.

Committee Members:

Prasad Kulkarni, Chair
Cuncong Zhong



Abstract

The research investigates the utilization of Synthetic Minority Oversampling Techniques (SMOTE) in the context of machine learning models applied to biomedical datasets, particularly focusing on mitigating demographic data disparities. The study is most relevant to underrepresented demographic data. The primary objective is to enhance the SMOTE methodology, traditionally designed for addressing class imbalances, to specifically tackle ethnic imbalances within feature representation. In contrast to conventional approaches that merely exclude race as a fundamental or additive factor without rectifying misrepresentation, this work advocates an innovative modification of the original SMOTE framework, emphasizing dataset augmentation based on participants' demographic backgrounds. The predominant aim of the project is to enhance and reshape the distribution to optimize model performance for unspecified demographic subgroups during training. However, the outcomes indicate that despite the application of feature balancing in this adapted SMOTE method, no statistically significant enhancement in accuracy was discerned. This observation implies that while rectifying imbalances is crucial, it may not independently suffice to overcome challenges associated with heterogeneity in species representation within machine learning models applied to biomedical databases. Consequently, further research endeavors are necessary to identify novel methodologies aimed at enhancing sampling accuracy and fairness within diverse populations.


Jessica Jeng

Exploiting Data Locality for Improving Multidimensional Variational Quantum Classification

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Esam El-Araby, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Quantum computing presents an opportunity to accelerate machine learning (ML) tasks on quantum processors in a similar vein to existing classical accelerators, such as graphical processing units (GPUs). In the classical domain, convolutional neural networks (CNNs) effectively exploit data locality using the convolution operation to reduce the number of fully-connected operations in multi-layer perceptrons (MLPs). Preserving data locality enables the pruning of training parameters, which results in reduced memory requirements and shorter training time without compromising classification accuracy. However, contemporary quantum machine learning (QML) algorithms do not leverage the data locality of input features in classification workloads, particularly for multidimensional data. This work presents a multidimensional quantum convolutional classifier (MQCC) that adapts the CNN structure to a variational quantum algorithm (VQA). The proposed MQCC uses quantum implementations of multidimensional convolution, pooling based on the quantum Haar transform (QHT) and partial measurement, and fully-connected operations. Time-complexity analysis will be presented to demonstrate the speedup of the proposed techniques in comparison to classical convolution and pooling operations on modern CPUs and/or GPUs. Experimental work is conducted on state-of-the-art quantum simulators from IBM Quantum and Xanadu modeling noise-free and noisy quantum devices. High-resolution multidimensional images are used to demonstrate the correctness and scalability of the convolution and pooling operations. Furthermore, the proposed MQCC model is tested on a variety of common datasets against multiple configurations of related ML and QML techniques. Based on standard metrics such as log loss, classification accuracy, number of training parameters, circuit depth, and gate count, it will be shown that MQCC can deliver a faithful implementation of CNNs on quantum machines. Additionally, it will be shown that by exploiting data locality MQCC can achieve improved classification over contemporary QML methods. 


Ashish Adhikari

Towards Assessing the Security of Program Binaries

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Fengjun Li
Sumaiya Shomaji


Abstract

Software vulnerabilities, stemming from coding weaknesses and poor development practices, have become increasingly prevalent. These vulnerabilities could be exploited by attackers to pose risks to the confidentiality, integrity, and availability of software. To protect themselves, end-users of software may have an interest in knowing if the software they buy and use is secure from such attacks. Our work is motivated by this need to automatically assess and rate the security properties of binary software.

To increase user trust in third-party software, researchers have devised several techniques and tools to identify and mitigate coding weaknesses in binary software. Therefore, our first task in this work is to assess the current landscape and comprehend the capabilities and challenges faced by binary-level techniques aimed at detecting critical coding weaknesses in software binaries. We categorize the most important coding weaknesses in compiled programming languages, and conduct a comprehensive survey, exploration, and comparison of static techniques designed to locate these weaknesses in software binaries. Furthermore, we perform an independent assessments of the efficacy of open-source tools using standard benchmarks.

Next, we develop techniques to assess if secure coding principles were adopted during the generation of the software binary. Towards this goal, we first develop techniques to determine the high-level source language used to produce the binary. Then, we check the feasibility of detecting the use of secure coding best practices during code development. Finally, we check the feasibility of detecting the vulnerable regions of code in any binary executable. Our ultimate future goal is to employ all of our developed techniques to rate the security-quality of the given binary software.


Hunter Glass

MeshMapper: Creating a Bluetooth Mesh Communication Network

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li


Abstract

With threat actors ever evolving, the need for secure communications continues to grow. By using non-traditional means as a way of a communication network, it is possible to securely communicate within a region using the bluetooth mesh protocol. The goal is to automatically place these mesh devices in a defined region in order to ensure the integrity and reliability of the network, while also ensuring the least number of devices are placed. By placing a provisioner node, the rest of the specified region populates with mesh nodes that act as relays, creating a network allowing users to communicate within. By utilizing Dijkstra’s algorithm, it is possible to calculate the Time to Live (TTL) between two given nodes in the network, which is an important metric as it directly affects how far apart two users can be within the region. When placing the nodes, a range for the nodes being used is specified and accounted for, which impacts the number of nodes needed within the region. Results show that when nodes are placed at coordinate points given by the generated map, users are able to communicate effectively across the specified region. In this project, a web interface is created in order to allow a user to specify the TTL, range, and the number of nodes to use, and proceeds to place each device within the region drawn by the user.