Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Masoud Ghazikor
Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum BandsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Morteza Hashemi, ChairVictor Frost
Prasad Kulkarni
Abstract
UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.
In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.
Ganesh Nurukurti
Customer Behavior Analytics and Recommendation System for E-CommerceWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Han Wang
Abstract
In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.
The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.
To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.
The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.
In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.
Srijanya Chetikaneni
Plant Disease Prediction Using Transfer LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Han Wang
Abstract
Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small.
All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.
Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.
This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.
Ahmet Soyyigit
Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical SystemsWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Committee Members:
Heechul Yun, ChairMichael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri
Abstract
The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.
CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.
Rahul Purswani
Finetuning Llama on custom data for QA tasksWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairDrew Davidson
Prasad Kulkarni
Abstract
Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.
Rithvij Pasupuleti
A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific LiteratureWhen & Where:
LEEP2, Room 2133
Committee Members:
Cuncong Zhong, ChairDongjie Wang
Han Wang
Zijun Yao
Abstract
The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity.
The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.
Vishnu Chowdary Madhavarapu
Automated Weather Classification Using Transfer LearningWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Committee Members:
David Johnson, ChairPrasad Kulkarni
Dongjie Wang
Abstract
This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.
RokunuzJahan Rudro
Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory StudyWhen & Where:
Eaton Hall, Room 1A
Committee Members:
Sumaiya Shomaji, ChairDavid Johnson
Zijun Yao
Alexandra Kondyli
Abstract
Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior by understanding the psychological and behavioral characteristics that influence the risk of crashes.
Md Mashfiq Rizvee
Energy Optimization in Multitask Neural Networks through Layer SharingWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Sumaiya Shomaji, ChairTamzidul Hoque
Han Wang
Abstract
Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively.
Fairuz Shadmani Shishir
Parameter-Efficient Computational Drug Discovery using Deep LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Sumaiya Shomaji, ChairTamzidul Hoque
Hongyang Sun
Abstract
The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles.
Soma Pal
Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilersWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairEsam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng
Abstract
Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA) C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.
In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.
Nyamtulla Shaik
AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in AutismWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Sumaiya Shomaji, ChairBo Luo
Dongjie Wang
Abstract
Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.
Alexander Rodolfo Lara
Creating a Faradaic Efficiency Graph Dataset Using Machine LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Zijun Yao, ChairSumaiya Shomaji
Kevin Leonard
Abstract
Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.
This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.
Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.
Amin Shojaei
Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart GridsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Morteza Hashemi, ChairAlex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri
Abstract
Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.
As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.
Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.
Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.
Asrith Gudivada
Custom CNN for Object State Classification in Robotic CookingWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
David Johnson, ChairPrasad Kulkarni
Dongjie Wang
Abstract
This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.
Tanvir Hossain
Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based PlatformWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Committee Members:
Tamzidul Hoque, ChairEsam El-Araby
Sumaiya Shomaji
Abstract
The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.
Hara Madhav Talasila
Radiometric Calibration of Radar Depth Sounder Data ProductsWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
Carl Leuschen, ChairPatrick McCormick
James Stiles
Jilu Li
Leigh Stearns
Abstract
Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.
As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.
Christopher Ord
A Hardware-Agnostic Simultaneous Transmit And Receive (STAR) Architecture for the Transmission of Non-Repeating FMCW WaveformsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rachel Jarvis, ChairShannon Blunt
Patrick McCormick
Abstract
With the increasing congestion of the usable RF spectrum, it is increasingly necessary for communication and radar systems to share the same frequencies without disturbing one another. To accomplish this, research has focused on designing a class of non-repeating radar waveforms that appear as noise at the receiver of uncooperative systems, but the peak power from high-power pulsed systems can still overwhelm nearby in-band systems. Therefore, to minimize peak power while maximizing the total energy on target, radar systems must transition to operating at a 100% duty cycle, which inherently requires Simultaneous Transmit and Receive (STAR) operation.
One inherent difficulty when operating monostatic STAR systems is the direct path coupling interference that can saturate a number of components in the radar’s receive chain, which makes digital processing methods that remove this interference ineffective. This thesis proposes a method to reduce the self-interference between the radar’s transmitter in receiver prior to the receiver’s sensitive components to increase the power that the radar can transmit at. By using a combination of tests that manipulate the timing, phase, and magnitude of a secondary waveform that is injected into the radar just before the receiver, upwards of 35.0 dB of self-interference cancellation is achieved for radar waveforms with bandwidths of up to 100 MHz at both S-band and X-band in both simulation and open-air testing.
Past Defense Notices
Theresa Moore
Array Manifold Calibration for Multichannel SAR SoundersWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
James Stiles, ChairShannon Blunt
Carl Leuschen
John Paden
Leigh Stearns
Abstract
Multichannel synthetic aperture radar (SAR) ice sounders rely on parametric angle estimators in tomography to resolve elevation angle beyond the Rayleigh resolution limit of their cross-track arrays. The potential super resolution capability of these techniques is predicated on perfect knowledge of the array’s response to directional sources, referred to as the array manifold. Array manifold calibration improves angle estimator performance by reducing the mismatch between the model of the array’s transfer function and truth; its study straddles the fields of both signal processing and antenna theory, yet associated literature reveals dichotomous methodologies that perpetuate fragmented interpretations of the manifold calibration problem. This dissertation addresses calibration for SAR ice sounders that three dimensionally image ice sheet and glacier beds with tomographic techniques. The approach is rooted in array signal processing first but seeks a more unifying perspective of the manifold calibration problem by leveraging commercial computational electromagnetics software to understand error mechanisms and algorithm performance with a deterministic model of an electromagnetic manifold. The research outlined here proposes creation of large snapshot databases that aid in identifying calibration targets in SAR pixels with known arrival angles. The signal processing methodology taxonomizes manifold calibration into parametric and nonparametric forms and advances both in the context of SAR sounders. A parametric estimator of nonlinear manifold parameters that are common across disjoint sets is derived. The algorithm framework capitalizes on a snapshot database to aggregate many angularly diverse observations in estimating unknown model parameters. The technique, which handles multitarget calibration, is desirable in the SAR sounder problem but requires a parametric model of the angle-dependent manifold. Nonparametric calibration techniques characterize the array response over the field of view but require many observations of single sources over dense calibration grids. A subspace clustering technique is proposed to identify snapshots with a single dominant source, thereby enabling a principal components-based characterization of the sounder manifold. The measured manifold leads to significant performance improvements over the traditional array response model in tomography. These results indicate that manifold calibration will reduce uncertainty in sounder-derived maps of the subsurface, leading to more accurate estimates of total fresh ice volume.
Shravan Kaundinya
Investigative Development of an UWB radar for UAS-borne applicationsWhen & Where:
Nichols Hall, Room 317
Committee Members:
Carl Leuschen, ChairChristopher Allen
Fernando Rodriguez-Morales
Emily Arnold
Abstract
Over the last few years, one of the primary focuses in engineering development has been system packaging and miniaturization. This is apparent in various areas such as the rise of Internet of Things (IoT), CubeSats, and Unmanned Aerial Systems (UAS). The simultaneous miniaturization in multiple industries has enabled advancements in remote sensing instrument development. Sensors such as radars, lidars, and cameras are used on UAS to characterize various aspects of the Earth System like ice, soil, and vegetation, thereby improving our understanding. In this work, an Ultra-wideband (UWB) radar system design for the Vapor 55 UAS rotorcraft is investigated. A compact, lightweight 2 – 18 GHz Frequency Modulated Continuous Wave (FMCW) radar with two channels on transmit and receive is designed to characterize extended targets like soil and snow. This thesis reports initial proof-of-concept field measurements performed with soil as the target to identify backscatter signatures that are indicative of moisture content. The thesis also describes the exploratory design, development, and laboratory test results of the miniaturized radar electronics and compact antenna front-end.
Zeus Gannon
Designing a SODAR testbed for RADAR applicationsWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Christopher Allen, ChairShannon Blunt
James Stiles
Abstract
In research there exists a need to constantly test and develop systems. Testing a radar system requires costly resources in terms of equipment and spectrum. These challenges relegate most testing to simulations, which are a poor approximation of reality. An alternative to over-the-air radar testing is presented here in the form of an over-the-air ultrasonic detection and ranging (SODAR) system. This system takes advantage of the similar wave-like propagation properties of acoustic and electromagnetic waves. With a SODAR testbed, radar waveform design can quickly move out of simulation and into the real world with minimal overhead. In this thesis, basic and advanced radar sensing techniques are demonstrated with a SODAR setup. Range detection, Doppler sensing, and pulse compression are shown as examples of basic radar concepts. For advanced sensing applications, array-based direction finding and synthetic aperture radar (SAR) are shown.
Usman Sajid
Effective Uni-modal to Multi-modal Crowd Estimation based on Deep Neural NetworksWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Taejoon Kim, ChairFengjun Li
Bo Luo
Cuncong Zhong
Guanghui Wang
Abstract
Crowd estimation is a vital component of crowd analysis. It finds many applications in real-world scenarios, e.g., huge gatherings management like Hajj, sporting and musical events, or political rallies. Automated crowd counting facilitates better and effective management of such events and consequently prevents any undesired situation. This is a very challenging problem in practice since there exists a significant difference in the crowd number in and across different images, varying image resolution, large perspective, severe occlusions, and dense crowd-like cluttered background regions. Current approaches do not handle huge crowd diversity well and thus perform poorly in cases ranging from extreme low to high crowd-density, thus, yielding huge crowd underestimation or overestimation. Also, manual crowd counting proves to be infeasible due to very slow and inaccurate results. To address these major crowd counting issues and challenges, we investigate two different types of input data: uni-modal (image) and multi-modal (image and audio).
In the uni-modal setting, we propose and analyze four novel end-to-end crowd counting networks, ranging from multi-scale fusion-based models to uni-scale one-pass and two-pass multi-task networks. The multi-scale networks employ the attention mechanism to enhance the model efficacy. On the other hand, the uni-scale models are well-equipped with novel and simple-yet-effective patch re-scaling module (PRM) that functions identical but is more lightweight than multi-scale approaches. Experimental evaluation demonstrates that the proposed networks outperform the state-of-the-art in majority cases on four different benchmark datasets with up to 12.6% improvement for the RMSE evaluation metric. Better cross-dataset performance also validates the better generalization ability of our schemes. For the multi-modal input, effective feature-extraction (FE) and strong information fusion between two modalities remain a big challenge. Thus, the multi-modal novel network design focuses on investigating different features fusion techniques amid improving the FE. Based on the comprehensive experimental evaluation, the proposed multi-modal network increases the performance under all standard evaluation criteria with up to 33.8% improvement in comparison to the state-of-the-art. The application of multi-scale uni-modal attention networks also proves more effective in other deep learning domains, as demonstrated successfully on seven different scene-text recognition task datasets with better performance.
Giordanno Castro Garcia
pyCatalstReader: Extracting Text and Tokenization of TechnicalWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Michael Branicky , ChairFengjun Li
Bo Luo
Kevin Leonard
Abstract
Catalysts are an essential and ubiquitous component of our modern life, from empowering our agriculture to reducing toxic emissions. There is a constant need for more and better catalysts. The catalysis research literature is immense, growing, and scattered. Natural Language Processing (NLP), a sub-field of Machine Learning (ML), offers a potential solution to automatically make full use of all this valuable information and speed innovation. Even though NLP has made much progress in the analysis of everyday text, its application in more technical text has not been as successful. Specifically, there are even a dearth of tools that can appropriately extract text from the PDF files of research articles, which are the most common format used in the catalyst field. Therefore, this project aims to define a tool that can extract text out PDF files of catalysis science articles, which is prerequisite to applying NLP and ML tools. We also explore the first stage of the NLP pipeline, tokenization, by objectively comparing different tokenizers for catalysis science articles.
Sai Manudeep Gadde
Landmark Classification and Tagging using Convolutional Neural NetworksWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Prasad Kulkarni, ChairMichael Branicky
Esam Al-Araby
Abstract
Photo sharing and photo storage services like to have location data for each photo that is uploaded. With the location data, these services can build advanced features, such as automatic suggestion of relevant tags or automatic photo organization, which help provide a compelling user experience. Although a photo's location can often be obtained by looking at the photo's metadata, many photos uploaded to these services will not have location metadata available. This can happen when, for example, the camera capturing the picture does not have GPS or if a photo's metadata is scrubbed due to privacy concerns.
If no location metadata for an image is available, one way to infer the location is to detect and classify a discernible landmark in the image. Given the large number of landmarks across the world and the immense volume of images that are uploaded to photo sharing services, using human judgement to classify these landmarks would not be feasible. In this project, we aim to address this problem by building models to automatically predict the location of the image based on any landmarks depicted in the image. We will go through the machine learning design process end-to-end: performing data preprocessing, designing and training CNNs, comparing the accuracy of different CNNs, and using some own images to heuristically evaluate the best CNN.
Dalton Brucker-Hahn
Anvil: Flexible and Dynamic Service Mesh Security Design for Microservice Architectures and Future Network Security ResearchWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Alexandru Bardas, ChairDrew Davidson
Fengjun Li
Bo Luo
Huazhen Fang
Abstract
Modern cloud computing environments are evolving with a focus upon speed of deployments, frequency of changes, and a greater adoption of microservice architectures. To handle these high-level business goals, an emerging series of tools and methodologies referred to as DevOps have been adopted to handle the dynamic and flexible environments being employed in enterprise software. A popular class of tools within the DevOps toolset are service meshes which aim to manage and connect swarms of microservices. Service meshes are also responsible for providing service discovery and security for the requests and responses occurring between microservices in a deployment.
Previous work has demonstrated several shortcomings and design limitations in existing, state-of-art service meshes. Due to this, studies focusing upon improving the security and providing dynamic solutions to these challenges have been proposed but fall short of addressing the issue. This work will propose a novel design to better address the existing challenges and security needs within this domain. Anvil, a novel, proof-of-concept service mesh will be designed, implemented, and evaluated
with the trade-off of security and performance in mind. The goal of Anvil is to provide a security-focused service mesh that can be extended and modified as needed for future research efforts involving service meshes and service mesh design. With flexibility and extensibility as primary design considerations, future research efforts within the domain of zero-trust networking and distributed system security will be explored and evaluated leveraging Anvil as the underlying service mesh infrastructure. The potential design and security benefits to the domain of microservice architectures by utilizing Anvil as a testbed and platform for security research is immense.
Laurynas Lialys
Near-Infrared Coherent Raman Spectroscopy and MicroscopyWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Shima Fardad, ChairRongqing Hui
Alessandro Salandrino
Abstract
Coherent Raman Scattering (CRS) spectroscopy and microscopy is a widely used technique in biology, chemistry, and physics to determine the chemical structure as well as provide a label-free image of the sample. The system uses two coherent laser beams one of which is constantly tuned in wavelength. Thus, a tunable laser source or optical parametric oscillator (OPO) is commonly used to achieve this requirement. However, the aforementioned devices are extremely expensive and work only for a specific wavelength range. In this study, we replace an OPO system with a photonic crystal fiber (PCF) in order to significantly reduce the cost and increase the flexibility of our microscopy system. Here, by exploiting the nonlinear phenomenon in the fiber called the soliton self-frequency shift (SSFS), we are able to shift the pulse central frequency while preserving its shape. Also, by switching to a near-infrared (NIR) source, the undesired fluorescence is reduced while the penetration depth increases. Moreover, the NIR laser source is more biologically friendly as each photon carries less energy than the visible laser counterpart. This reduces the probability of the photodamage effect. Based on this system, we designed and implemented CRS microscopy and spectroscopy, using Coherent anti-Stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) spectroscopy techniques.
Lazarus Sandhagala Francis
Sentiment Analysis for detecting depression through Social Media PostsWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Prasad Kulkarni, ChairDavid Johnson, Co-Chair
Michael Branicky
Abstract
Depression is a common and serious medical condition that negatively affects how one thinks, feels, and acts. Emotional symptoms of depression include loss of interest and/or sad mood. Lack of hope, a sense of guilt or worthlessness, and recurring thoughts of death or suicide are also reported in some cases. After the recent pandemic, depression rates have increased dramatically. Although depression is a major burden for the healthcare system worldwide, it is treatable. Only 47.3% of mental health cases are detected accurately by professionals as Patient Health Questionnaire is used as a screening tool that is heavily dependent on what the patient can remember from the past few weeks. Considering the challenges Healthcare professionals are facing, we can supply helpful resources to those users who have been detected with any depressive symptoms from their social media posts. As social media platforms have altered our world, most people are now connected than ever and are showing a digital persona. We can use all the user-generated content to help them. Sentiment Analysis, also called opinion mining, is a process of detecting the emotional tone behind any piece of text. It is majorly used to analyze news articles, User-generated content, and the text of research papers. This project aims to create a dataset by scrapping tweets and detecting a probably depressed twitter user based on their tweets using Natural Language Processing techniques. Currently, Social media platforms like Twitter have A.I. systems that flag tweets about misinformation, misleading tweets, or those tweets that violate the site’s terms and conditions. Like that, we can also have a depression detection system that will supply users who are probably exhibiting depressive emotions with helpful articles, images, or videos.
Ashwin Rathore
Wireless Communications for Unmanned Vehicles in the Sky and on the GroundWhen & Where:
Zoom Meeting, please contact jgrisafe@ku.edu for link.
Committee Members:
Morteza Hashemi, ChairDavid Johnson
Prasad Kulkarni
Abstract
Given the ever-increasing use of unmanned aerial vehicles (UAV), there are great potentials as well strict requirements for their safe operation in beyond-visual-line-of-sight (BVLOS) environments. Commercial package delivery, emergency services, tracking, inspection, arejust some of those applications. To support these applications under the BVLOS scenarios, a reliable command and control (C2) communication channel with an extended range is needed. To investigate performance of different communication technologies, we use an open-source simulator that integrates the flight simulator ArduPilot with the network simulator NS-3. We implement several flight missions and investigate the performance of 4G cellular network compared with Wi-Fi for establishing the connection between the UAV and groundcontrol station (GCS). Our simulation results demonstrate the benefits of using 4G to satisfy the C2 requirements. Our simulated flight mission consists of multiple UAVs on the same network and also using external interference to observe network performance in terms of average delay, communication range, and received signal strength. In the second part of this project, we explore wireless connectivity between unmanned (autonomous) vehicles on the ground. To this end, we use Amazon’s Deepracer autonomous car that is primarily used for developing and testing machine learning algorithms for multi-vehicle racing, track completion, and obstacle avoidance. We leverage Deepraccer cars to establish peer-to-peer wireless connection between multiple vehicles operating in the same environment. This will enable autonomous vehicles to share crucial information such as positions, velocity, obstacle,and accidents on the way to enhance roads safety.