Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


RokunuzJahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior  by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.

This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.


Tanvir Hossain

Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based Platform

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.


Hara Madhav Talasila

Radiometric Calibration of Radar Depth Sounder Data Products

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Carl Leuschen, Chair
Patrick McCormick
James Stiles
Jilu Li
Leigh Stearns

Abstract

Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.

As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.


Christopher Ord

A Hardware-Agnostic Simultaneous Transmit And Receive (STAR) Architecture for the Transmission of Non-Repeating FMCW Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rachel Jarvis, Chair
Shannon Blunt
Patrick McCormick


Abstract

With the increasing congestion of the usable RF spectrum, it is increasingly necessary for communication and radar systems to share the same frequencies without disturbing one another. To accomplish this, research has focused on designing a class of non-repeating radar waveforms that appear as noise at the receiver of uncooperative systems, but the peak power from high-power pulsed systems can still overwhelm nearby in-band systems. Therefore, to minimize peak power while maximizing the total energy on target, radar systems must transition to operating at a 100% duty cycle, which inherently requires Simultaneous Transmit and Receive (STAR) operation.

One inherent difficulty when operating monostatic STAR systems is the direct path coupling interference that can saturate a number of components in the radar’s receive chain, which makes digital processing methods that remove this interference ineffective. This thesis proposes a method to reduce the self-interference between the radar’s transmitter in receiver prior to the receiver’s sensitive components to increase the power that the radar can transmit at. By using a combination of tests that manipulate the timing, phase, and magnitude of a secondary waveform that is injected into the radar just before the receiver, upwards of 35.0 dB of self-interference cancellation is achieved for radar waveforms with bandwidths of up to 100 MHz at both S-band and X-band in both simulation and open-air testing.


Past Defense Notices

Dates

Xi Mo

Convolutional Neural Network in Pattern Recognition

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Cuncong Zhong, Chair
Taejoon Kim
Fengjun Li
Bo Luo
Hauzhen Fang

Abstract

Since convolutional neural network (CNN) was first implemented by Yann LeCun et al. in 1989, CNN and its variants have been widely implemented to numerous topics of pattern recognition, and have been considered as the most crucial techniques in the field of artificial intelligence and computer vision. This dissertation not only demonstrates the implementation aspect of CNN, but also lays emphasis on the methodology of neural network (NN) based classifier.

As known to many, one general pipeline of NN-based classifier can be recognized as three stages: pre-processing, inference by models, and post-processing. To demonstrate the importance of pre-processing techniques, this dissertation presents how to model actual problems in medical pattern recognition and image processing by introducing conceptual abstraction and fuzzification. In particular, a transformer on the basis of self-attention mechanism, namely beat-rhythm transformer, greatly benefits from correct R-peak detection results and conceptual fuzzification.

Recently proposed self-attention mechanism has been proven to be the top performer in the fields of computer vision and natural language processing. In spite of the pleasant accuracy and precision it has gained, it usually consumes huge computational resources to perform self-attention. Therefore, realtime global attention network is proposed to make a better trade-off between efficiency and performance for the task of image segmentation. To illustrate more on the stage of inference, we also propose models to detect polyps via Faster R-CNN - one of the most popular CNN-based 2D detectors, as well as a 3D object detection pipeline for regressing 3D bounding boxes from LiDAR points and stereo image pairs powered by CNN.

The goal for post-processing stage is to refine artifacts inferred by models. For the semantic segmentation task, the dilated continuous random field is proposed to be better fitted to CNN-based models than the widely implemented fully-connected continuous random field. Proposed approaches can be further integrated into a reinforcement learning architecture for robotics.


Sirisha Thippabhotla

An Integrated Approach for de novo Gene Prediction, Assembly and Biosynthetic Gene Cluster Discovery of Metagenomic Sequencing Data

When & Where:


Eaton Hall, Room 1

Committee Members:

Cuncong Zhong, Chair
Prasad Kulkarni
Fengjun Li
Zijun Yao
Liang Xu

Abstract

Metagenomics is the study of genomic content present in given microbial communities. Metagenomic functional analysis aims to quantify protein families and reconstruct metabolic pathways from the metagenome. It plays a central role in understanding the interaction between the microbial community and its host or environment. De novo functional analysis, which allows the discovery of novel protein families, remains challenging for high-complexity communities. There are currently three main approaches for recovering novel genes or proteins: de novo nucleotide assembly, gene calling, and peptide assembly. Unfortunately, their informational dependencies have been overlooked, and have been formulated as independent problems. 

In this work, we propose a novel de novo analysis pipeline that leverages these informational dependencies, to improve functional analysis of metagenomics data. Specifically, the pipeline will contain four novel modules: an assembly graph module, a graph-based gene calling module, a peptide assembly module, and a biosynthetic gene cluster (BGC) discovery module. The assembly graph module will be computational and memory efficient. It will be based on a combination of de Bruijn and string graphs. The assembly graphs contain important sequencing information, which can be further exploited to improve functional annotation. De novo gene-calling enables us to predict novel genes and protein sequences, that have not been previously characterized. We hypothesize that de novo gene calling can benefit from assembly graph structures, as they contain important start/stop codon information that provide stronger ORF signals. The assembly graph framework will be designed for both nucleotide and protein sequences. The resulting protein sequences from gene calling can be further assembled into longer protein contigs using our assembly framework. For the novel BGC module, the gene members of a BGC will be marked in the assembly graph. Finding a BGC can be achieved by identifying a path connecting its gene members in the assembly graph. Experimental results have shown that our proposed pipeline improved existing gene calling sensitivity on unassembled reads, achieving a 10-15% improvement in sensitivity over the state-of-the-art methods, at a high specificity (>90%). Our pipeline further allowed for more sensitive and accurate peptide assembly, recovering more reference proteins, delivering more hypothetical protein sequences.


Naveed Mahmud

Towards Complete Emulation of Quantum Algorithms using High-Performance Reconfigurable Computing

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Esam El-Araby, Chair
Perry Alexander
Prasad Kulkarni
Heechul Yun
Tyrone Duncan

Abstract

Quantum computing is a promising technology that can potentially demonstrate supremacy over classical computing in solving specific problems. At present, two critical challenges for quantum computing are quantum state decoherence, and low scalability of current quantum devices. Decoherence places constraints on realistic applicability of quantum algorithms as real-life applications usually require complex equivalent quantum circuits to be realized. For example, encoding classical data on quantum computers for solving I/O and data-intensive applications generally requires quantum circuits that violate decoherence constraints. In addition, current quantum devices are of small-scale having low quantum bit(qubit) counts, and often producing inaccurate or noisy measurements, which also impacts the realistic applicability of real-world quantum algorithms. Consequently, benchmarking of existing quantum algorithms and investigation of new applications are heavily dependent on classical simulations that use costly, resource-intensive computing platforms. Hardware-based emulation has been alternatively proposed as a more cost-effective and power-efficient approach. This work proposes a hardware-based emulation methodology for quantum algorithms, using cost-effective Field-Programmable Gate-Array(FPGA) technology. The proposed methodology consists of three components that are required for complete emulation of quantum algorithms; the first component models classical-to-quantum(C2Q) data encoding, the second emulates the behavior of quantum algorithms, and the third models the process of measuring the quantum state and extracting classical information, i.e., quantum-to-classical(Q2C) data decoding. The proposed emulation methodology is used to investigate and optimize methods for C2Q/Q2C data encoding/decoding, as well as several important quantum algorithms such as Quantum Fourier Transform(QFT), Quantum Haar Transform(QHT), and Quantum Grover’s Search(QGS). This work delivers contributions in terms of reducing complexities of quantum circuits, extending and optimizing quantum algorithms, and developing new quantum applications. For higher emulation performance and scalability of the framework, hardware design techniques and hardware architectural optimizations are investigated and proposed. The emulation architectures are designed and implemented on a high-performance-reconfigurable-computer(HPRC), and proposed quantum circuits are implemented on a state-of-the-art quantum processor. Experimental results show that the proposed hardware architectures enable emulation of quantum algorithms with higher scalability, higher accuracy, and higher throughput, compared to existing hardware-based emulators. As a case study, quantum image processing using multi-spectral images is considered for the experimental evaluations. 


Cecelia Horan

Open-Source Intelligence Investigations: Development and Application of Efficient Tools

When & Where:


2001B Eaton Hall

Committee Members:

Hossein Saiedian, Chair
Drew Davidson
Fengjun Li


Abstract

Open-source intelligence is a branch within cybercrime investigation that focuses on information collection and aggregation. Through this aggregation, investigators and analysts can analyze the data for connections relevant to the investigation. There are many tools that assist with information collection and aggregation. However, these often require enterprise licensing. A solution to enterprise licensed tools is using open-source tools to collect information, often by scraping websites. These tools provide useful information, but they provide a large number of disjointed reports. The framework we developed automates information collection, aggregates these reports, and generates one single graphical report. By using a graphical report, the time required for analysis is also reduced. This framework can be used for different investigations. We performed a case study regarding the performance of the framework with missing person case information. It showed a significant improvement in the time required for information collection and report analysis. 


Ishrak Haye

Invernet: An Adversarial Attack Framework to Infer Downstream Context Distribution Through Word Embedding Inversion

When & Where:


Nichols Hall, Room 246

Committee Members:

Bo Luo, Chair
Zijun Yao, Co-Chair
Alex Bardas
Fengjun Li

Abstract

Word embedding has become a popular form of data representation that is used to train deep neural networks in many natural

language processing tasks, such as Machine Translation, Question Answer Generation, Named Entity Recognition, Next

Word/Sentence Prediction etc. With embedding, each word is represented as a dense vector which captures its semantic relationship

with other words and can better empower Machine Learning models to achieve state-of-the-art performance.

However, due to the memory and time intensive nature of learning such word embeddings, transfer learning has emerged as a

common practice to warm start the training process. As a result, an efficient way is to initialize with pretrained word vectors and then

fine-tune those on downstream domain specific smaller datasets. This study aims to find whether we can infer the contextual

distribution (i.e., how words cooccur in a sentence driven by syntactic regularities) of the downstream datasets given that we have

access to the embeddings from both pre-training and fine-tuning processes.

In this work, we propose a focused sampling method along with a novel model inversion architecture “Invernet” to invert word

embeddings into the word-to-word context information of the fine-tuned dataset. We consider the popular word2Vec models

including CBOW, SkipGram, and GloVe based algorithms with various unsupervised settings. We conduct extensive experimental

study on two real-world news datasets: Antonio Gulli’s News Dataset from Hugging Face repository and a New York Times dataset

from both quantitative and qualitative perspectives. Results show that “Invernet” has been able to achieve an average F1 score of 0.75

and an average AUC score of 0.85 in an attack scenario.

A concerning pattern from our experiments reveal that embedding models that are generally considered superior in different tasks

tend to be more vulnerable to model inversion. Our results suggest that a significant amount of context distribution information from

the downstream dataset can potentially leak if an attacker gets access to the pretrained and fine-tuned word embeddings. As a result,

attacks using “Invernet” can jeopardize the privacy of the users whose data might have been used to fine-tune the word embedding

model.


Sohaib Kiani

Designing Secure and Robust Machine Learning Models

When & Where:


Nichols Hall, Room 250, Gemini Room

Committee Members:

Bo Luo, Chair
Alex Bardas
Fengjun Li
Cuncong Zhong
Xuemin Tu

Abstract

With the growing computational power and the enormous data available from many sectors, applications with machine learning (ML) components are widely adopted in our everyday lives. One major drawback associated with ML models is hard to guarantee same performance with changing environment. Since ML models are not traditional software that can be tested end-to-end. ML models are vulnerable against distributional shifts and cyber-attacks. Various cyber-attacks against deep neural networks (DNN) have been proposed in the literature, such as poisoning, evasion, backdoor, and model inversion. In the evasion attacks against DNN, the attacker generates adversarial instances that are visually indistinguishable from benign samples and sends them to the target DNN to trigger misclassifications.

In our work, we proposed a novel multi-view adversarial image detector, namely ‘Argos’, based on a novel observation. That is, there exist two” souls” in an adversarial instance, i.e., the visually unchanged content, which corresponds to the true label, and the added invisible perturbation, which corresponds to the misclassified label. Such inconsistencies could be further amplified through an autoregressive generative approach that generates images with seed pixels selected from the original image, a selected label, and pixel distributions learned from the training data. The generated images (i.e., the “views”) will deviate significantly from the original one if the label is adversarial, demonstrating inconsistencies that ‘Argos’ expects to detect. To this end, ‘Argos’ first amplifies the discrepancies between the visual content of an image and its misclassified label induced by the attack using a set of regeneration mechanisms and then identifies an image as adversarial if the reproduced views deviate to a preset degree. Our experimental results show that ‘Argos’ significantly outperforms two representative adversarial detectors in both detection accuracy and robustness against six well-known adversarial attacks.


Timothy Barclay

Proof-Producing Synthesis of CakeML from Coq

When & Where:


Nichols Hall, Room 246

Committee Members:

Perry Alexander, Chair
Alex Bardas
Drew Davidson
Matthew Moore
Eileen Nutting

Abstract

Coq's extraction plugin is used to produce code of a general purpose

  programming language from a specification written in the Calculus of Inductive

  Constructions (CIC). Currently, this mechanism is trusted, since there is no

  formal connection between the synthesized code and the CIC terms it originated

  from. This comes from a lack of formal specifications for the target

  languages: OCaml, Haskell, and Scheme. We intend to use the formally specified

  CakeML language as an extraction target, and generate a theorem in Coq that

  relates the generated CakeML abstract syntax to the CIC terms it is generated

  from. This work expands on the techniques used in the HOL4 translator from

  Higher Order Logic to CakeML. The HOL4 translator also allows for the

  generation of stateful code from the state and exception monad. We expand on

  their techniques by extracting terms with dependent types, and generating

  stateful code for other kinds of monads, like the reader monad, depending on

  what kind of computation the monad intends to represent.


Grant Jurgensen

A Verified Architecture for Trustworthy Remote Attestation

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Perry Alexander, Chair
Drew Davidson
Matthew Moore


Abstract

Remote attestation is a process where one digital system gathers and provides evidence of its state and identity to an external system. For this process to be successful, the external system must find the evidence convincingly trustworthy within that context. Remote attestation is difficult to make trustworthy due to the external system’s limited access to the attestation target. In contrast to local attestation, the appraising system is unable to directly observe and oversee the attestation target. In this work, we present a system architecture design and prototype implementation that we claim enables trustworthy remote attestation. Furthermore, we formally model the system within a temporal logic embedded in the Coq theorem prover and present key theorems that strengthen this trust argument.


Kaidong Li

Accurate and Robust Object Detection and Classification Based on Deep Neural Networks

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Cuncong Zhong, Chair
Taejoon Kim
Fengjun Li
Bo Luo
Haiyang Chao

Abstract

Recent years have seen tremendous developments in the field of computer vision and its extensive applications. The fundamental task, image classification, benefiting from deep convolutional neural networks (CNN)'s extraordinary ability to extract deep semantic information from input data, has become the backbone for many other computer vision tasks, like object detection and segmentation. A modern detection usually has bounding-box regression and class prediction with a pre-trained classification model as the backbone. The architecture is proven to produce good results, however, improvements can be made with closer inspections. A detector takes a pre-trained CNN from the classification task and selects the final bounding boxes from multiple proposed regional candidates by a process called non-maximum suppression (NMS), which picks the best candidates by ranking their classification confidence scores. The localization evaluation is absent in the entire process. Another issue is the classification uses one-hot encoding to label the ground truth, resulting in an equal penalty for misclassifications between any two classes without considering the inherent relations between the classes.

My research aims to address the following issues. (1) We proposed the first location-aware detection framework for single-shot detectors that can be integrated into any single-shot detectors. It boosts detection performance by calibrating the ranking process in NMS with localization scores. (2) To more effectively back-propagate gradients, we designed a super-class guided architecture that consists of a superclass branch (SCB) and a finer class branch (FCB). To further increase the effectiveness, the features from SCB with high-level information are fed to FCB to guide finer class predictions. (3) Recent works have shown 3D point cloud models are extremely vulnerable under adversarial attacks, which poses a serious threat to many critical applications like autonomous driving and robotic controls. To increase the robustness of CNN models on 3D point cloud models, we propose a family of robust structured declarative classifiers for point cloud classification, where the internal constrained optimization mechanism can effectively defend adversarial attacks through implicit gradients.


Christian Daniel

Dynamic Metasurface Grouping for IRS Optimization in Massive MIMO Communications

When & Where:


246 Nichols Hall

Committee Members:

Erik Perrins, Chair
Taejoon Kim, Co-Chair
Morteza Hashemi


Abstract

Intelligent Reflecting Surfaces (IRSs) grant the ability to control what was once considered the uncontrollable part of wireless communications, the channel. These smart signal mirrors show promise to significantly improve the effective signal-to-noise-ratio (SNR) of cell-users when the line-of-sight (LOS) channel between the base station (BS) and user is blocked. IRSs use implementable optimized phase shifts that beamform a reflected signal around channel blockages, and because they are passive devices, they have the benefit of having low cost and low power consumption. Previous works have concluded that IRSs need several hundred elements to outperform relays. Unfortunately, overhead and complexity costs related to optimizing these devices limit their scope to single-input single-output (SISO) systems. With multiple-input multiple-output (MIMO) and Massive MIMO becoming crucial components to modern 5G and beyond networks, a way to mitigate these overhead costs and integrate IRS technology with the promising MIMO techniques is paramount for these devices to have a place within modern cell technologies. This thesis proposes an IRS element grouping scheme that greatly reduces the number of unique IRS phases that need to be calculated and sent to the IRS controller via the limited rate feedback channel and allows for the ideal number of groups to be obtained at the BS before data transmission. Three methods are proposed to design the phase shifts and element partitioning within our scheme to improve effective SNR in an IRS-aided system. In our simulations, it is shown that our best performing method is one that dynamically partitions the IRS elements into non- uniform groups based on information gathered from the reflected channel and then optimizes its phase shifts. This method successfully handles the overhead trade-off problem, and shows significant achievable rate improvement from previous works.