Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Andrew Riachi
An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux SmapsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Prasad Kulkarni, ChairPerry Alexander
Drew Davidson
Heechul Yun
Abstract
Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.
In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.
Elizabeth Wyss
A New Frontier for Software Security: Diving Deep into npmWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairAlex Bardas
Fengjun Li
Bo Luo
J. Walker
Abstract
Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week.
However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.
This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.
Alfred Fontes
Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope ModulationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.
A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal.
The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.
Qua Nguyen
Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless CommunicationsWhen & Where:
Zoom Defense, please email jgrisafe@ku.edu for link.
Committee Members:
Erik Perrins, ChairMorteza Hashemi
Zijun Yao
Taejoon Kim
KC Kong
Abstract
This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.
In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.
The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.
This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.
Arin Dutta
Performance Analysis of Distributed Raman Amplification with Different Pumping ConfigurationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rongqing Hui, ChairMorteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao
Abstract
As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.
Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.
The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.
As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.
Audrey Mockenhaupt
Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target RecognitionWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jon Owen
Abstract
As machine learning (ML), artificial intelligence (AI), and deep learning continue to advance, their applications become more diverse – one such application is synthetic aperture radar (SAR) automatic target recognition (ATR). These SAR ATR networks use different forms of deep learning such as convolutional neural networks (CNN) to classify targets in SAR imagery. An emerging research area of SAR is dual function radar communication (DFRC) which performs both radar and communications functions using a single co-designed modulation. The utilization of DFRC emissions for SAR imaging impacts image quality, thereby influencing SAR ATR network training. Here, using the Civilian Vehicle Data Dome dataset from the AFRL, SAR ATR networks are trained and evaluated with simulated data generated using Gaussian Minimum Shift Keying (GMSK) and Linear Frequency Modulation (LFM) waveforms. The networks are used to compare how the target classification accuracy of the ATR network differ between DFRC (i.e., GMSK) and baseline (i.e., LFM) emissions. Furthermore, as is common in pulse-agile transmission structures, an effect known as ’range sidelobe modulation’ is examined, along with its impact on SAR ATR. Finally, it is shown that SAR ATR network can be trained for GMSK emissions using existing LFM datasets via two types of data augmentation.
Past Defense Notices
Michael Bechtel
Shared Resource Denial-of-Service Attacks on Multicore PlatformsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Heechul Yun, ChairMohammad Alian
Drew Davidson
Prasad Kulkarni
Shawn Keshmiri
Abstract
With the increased adoption of complex machine learning algorithms across many different fields, powerful computing platforms have become necessary to meet their computational needs. Multicore platforms are a popular choice as they provide greater computing capabilities and can still meet different size, weight, and power (SWaP) constraints. However, contention for shared hardware resources between multiple cores remains a significant challenge that can lead to interference and unpredictable timing behaviors. Furthermore, this contention can be intentionally induced by malicious actors with the specific goals of delaying safety-critical tasks and jeopardizing system safety. This is done by performing Denial-of-Service (DoS) attacks that target shared resources such that the other cores in a system are unable to access them. When done properly, these shared resource DoS attacks can significantly impact performance and threaten system stability. For example, DoS attacks can cause >300X slowdown on the popular Raspberry Pi 3 embedded platform.
Motivated by the inherent risks posed by these DoS attacks, this dissertation presents investigations and evaluations of shared resource contention on multicore platforms, and the impacts it can have on the performance of real-time tasks. We propose various DoS attacks that each target different shared resources in the memory hierarchy with the goal of causing as much slowdown as possible. We show that each attack can inflict significant temporal slowdowns to victim tasks on target platforms by exploiting different hardware and software mechanisms. We then develop and analyze techniques for providing shared resource isolation and temporal performance guarantees for safety-critical tasks running on multicore platforms. In particular, we find that bandwidth throttling mechanisms are effective solutions against most DoS attacks and can protect the performance of real-time victim tasks.
Sarah Johnson
Formal Analysis of TPM Key Certification ProtocolsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Perry Alexander, ChairMichael Branicky
Emily Witt
Abstract
Development and deployment of trusted systems often require definitive identification of devices. A remote entity should have confidence that a device is as it claims to be. An ideal method for fulfulling this need is through the use of secure device identitifiers. A secure device identifier (DevID) is defined as an identifier that is cryptographically bound to a device. A DevID must not be transferable from one device to another as that would allow distinct devices to be identified as the same. Since the Trusted Platform Module (TPM) is a secure Root of Trust for Storage, it provides the necessary protections for storing these identifiers. Consequently, the Trusted Computing Group (TCG) recommends the use of TPM keys for DevIDs. The TCG's specification TPM 2.0 Keys for Device Identity and Attestation describes several methods for remotely proving a key to be resident in a specific device's TPM. These methods are carefully constructed protocols which are intended to be performed by a trusted Certificate Authority (CA) in communication with a certificate-requesting device. DevID certificates produced by an OEM's CA at device manufacturing time may be used to provide definitive evidence to a remote entity that a key belongs to a specific device. Whereas DevID certificates produced by an Owner/Administrator's CA require a chain of certificates in order to verify a chain of trust to an OEM-provided root certificate. This distinction is due to the differences in the respective protocols prescribed by the TCG's specification. We aim to abstractly model these protocols and formally verify that their resulting assurances on TPM-residency do in fact hold. We choose this goal since the TCG themselves do not provide any proofs or clear justifications for how the protocols might provide these assurances. The resulting TPM-command library and execution relation modeled in Coq may easily be expanded upon to become useful in verifying a wide range of properties regarding DevIDs and TPMs.
Andrew Cousino
Recording Remote Attestations on the BlockchainWhen & Where:
Nichols Hall, Gemini Room
Committee Members:
Perry Alexander, ChairAlex Bardas
Drew Davidson
Abstract
Remote attestation is a process of establishing trust between various systems on a network. Until now, attestations had to be done on the fly as caching attestations had not yet been solved. With the blockchain providing a monotonic record, this work attempts to enable attestations to be cached. This paves the way for more complex attestation protocols to fit the wide variety of needs of users. We also developed specifications for these records to be cached on the blockchain.
Ragib Shakil Rafi
Nonlinearity Assisted Mie Scattering from NanoparticlesWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Alessandro Salandrino, ChairShima Fardad
Morteza Hashemi
Rongqing Hui
Judy Wu
Abstract
Scattering by nanoparticles is an exciting branch of physics to control and manipulate light. More specifically, there have been fascinating developments regarding light scattering by sub-wavelength particles, including high-index dielectric and metal particles, for their applications in optical resonance phenomena, detecting the fluorescence of molecules, enhancing Raman scattering, transferring the energy to the higher order modes, sensing and photodetector technologies. It recently gained more attention due to its near-field effect at the nanoscale and achieving new insights and applications through space and time-varying parametric modulation and including nonlinear effects. When the particle size is comparable to or slightly bigger than the incident wavelength, Mie solutions to Maxwell's equations describe these electromagnetic scattering problems. The addition and excitation of nonlinear effects in these high-indexed sub-wavelength dielectric and plasmonic particles might improve the existing performance of the system or provide additional features directed toward unique applications. In this thesis, we study the Mie scattering from dielectric and plasmonic particles in the presence of nonlinear effects. For dielectrics, we present a numerical study of the linear and nonlinear diffraction and focusing properties of dielectric metasurfaces consisting of silicon microcylinder arrays resting on a silicon substrate. Upon diffraction, such structures lead to the formation of near-field intensity profiles reminiscent of photonic nanojets and propagate similarly. Our results indicate that the Kerr nonlinear effect enhances light concentration throughout the generated photonic jet with an increase in the intensity of about 20% compared to the linear regime for the power levels considered in this work. The transverse beamwidth remains subwavelength in all cases, and the nonlinear effect reduces the full width. In the future, we want to optimize the performance through parametric modification of the system and continue our study with plasmonic structures in time–varying scenarios. We hope that with appropriate parametric modulation, intermodal energy transfer is possible in such structures. We want to explore the nonlinear excitation to transfer energy in higher-order modes by exploiting different wave-mixing interactions in time-modulated scatterers.
Anna Fritz
Negotiating Remote Attestation ProtocolsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Perry Alexander, ChairAlex Bardas
Drew Davidson
Fengjun Li
Emily Witt
Abstract
During remote attestation, a relying party prompts a target to perform some stateful measurement which can be appraised to determine trust in the target's system. In this current framework, requested measurement operations must be provisioned by a knowledgeable system user who may fail to consider situational demands which potentially impact the desired measurement. To solve this problem, we introduce negotiation: a framework that allows the target and relying party to mutually determine an attestation protocol that satisfies both the target's need to protect sensitive information and the relying party's desire for a comprehensive measurement. We designed and verified this negotiation procedure such that for all negotiations, we can provably produce an executable protocol that satisfies the targets privacy standards. With the remainder of this work, we aim to realize and instantiate protocol orderings ensuring negotiation produces a protocol sufficient for the relying party. All progress is towards our ultimate goal of producing a working, fully verified negotiation scheme which will be integrated into our current attestation framework for flexible, end-to-end attestations.
Paul Gomes
A framework for embedding hybrid term proximity score with standard TF-IDF to improve the performance of recipe retrieval systemWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairDavid Johnson
Hongyang Sun
Abstract
Information retrieval system plays an important role in the modern era in retrieving relevant information from a large collection of data, such as documents, webpages, and other multimedia content. Having an information retrieval system in any domain allows users to collect relevant information. Unfortunately, navigating a modern-day recipe website presents the audience with numerous recipes in a colorful user interface but with very little capability to search and narrow down your content based on your specific interests. The goal of the project is to develop a search engine for recipes using standard TF-IDF weighting and to improve the performance of the standard IR by implementing term proximity. The approach used to calculate term proximity in this project is a hybrid approach, a combination of span-based and pair-based approaches. The project architecture includes a crawler, a database, an API, a service responsible for TF-IDF weighting and term proximity calculation, and a web application to present the search results.
Anjali Pare
Exploring Errors in Binary-Level CFG RecoveryWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairFengjun Li
Bo Luo
Abstract
The control-flow graph (CFG) is a graphical representation of the program and holds information that is critical to the correct application of many other program analysis, performance optimization, and software security algorithms and techniques. While CFG generation is an ordinary task for source-level tools, like the compiler, the loss of high-level program information makes accurate CFG recovery a challenging issue for binary-level software reverse engineering (SRE) tools. Earlier research has shown that while advanced SRE tools can precisely reconstruct most of the CFG for the programs, important gaps and inaccuracies remain that may hamper critical tasks, from vulnerability and malicious code detection to adequately securing software binaries.
In this paper, we study three reverse engineering tools - angr, radare2 and Ghidra and perform an in-depth analysis of control-flow graphs generated by these tools. We develop a unique methodology using manual analysis and automated scripting to understand and categorize the CFG errors over a large benchmark set. Of the several interesting observations revealed by this work, one that is particularly unexpected is that most errors in the reconstructed CFGs appear to not be intrinsic limitations of the binary-level algorithms, as currently believed, and may be simply eliminated by more robust implementations. We expect our work to lead to more accurate CFG reconstruction in SRE tools and improved precision for other algorithms that employ CFGs.
Kailani Jones
Security Operation Centers: Analyzing COVID-19's Work-from-Home Influence on Endpoint Management and Developing a Sociotechnical Metrics FrameworkWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Alex Bardas, ChairDrew Davidson
Fengjun Li
Bo Luo
John Symons
Abstract
Security Operations Centers (SOCs) are central components of modern enterprise networks. Organizations in industry, government, and academia deploy SOCs to manage their networks, defend against cyber threats, and maintain regulatory compliance. For reporting, SOC leadership typically use metrics such as “number of security incidents”, “mean time to remediation/ticket closure”, and “risk analysis” to name a few. However, these commonly leveraged metrics may not necessarily reflect the effectiveness of a SOC and its supporting tools.
To better understand these environments, we employ ethnographic approaches (e.g., participant observation) and embed a graduate student (a.k.a., field worker) in a real-world SOC. As the field worker worked in-person, alongside SOC employees and recorded observations on technological tools, employees and culture, COVID-19's work-from-home (WFH) phenomena occurred. In response, this dissertation traces and analyzes the SOC's effort to adapt and reprioritize. By intersecting historical analysis (starting in the 1970s) and ethnographic field notes (analyzed 352 field notes across 1,000+ hours in a SOC over 34 months) whilst complementing with quantitative interviews (covering 7 other SOCs), we find additional causal forces that, for decades, have pushed SOC network management toward endpoints.
Although endpoint management is not a novel concept to SOCs, COVID-19's WFH phenomena highlighted the need for flexible, supportive, and customizable metrics. As such, we develop a sociotechnical metrics framework with these qualities in mind and limit the scope to a core SOC function: alert handling. With a similar ethnographic approach (participant observation paired with semi-structured interviews covering 15 SOC employees across 10 SOCs), we develop the framework's foundation by analyzing and capturing the alert handling process (a.k.a., alert triage). This process demonstrates the significance of not only technical expertise (e.g., data exfiltration, command and control, etc.) but also the social characteristics (e.g., collaboration, communication, etc.). In fact, we point out the underlying presence and importance of expert judgment during alert triaging particularly during conclusion development.
In addition to the aforementioned qualities, our alert handling sociotechnical metrics framework aims to capture current gaps during the alert triage process that, if improved, could help SOC employees' effectiveness. With the focus upon this process and the uncovered limitations SOCs usually face today during alert handling, we validate not only this flexibility of our framework but also the accuracy in a real-world SOC
Gordon Ariho
MULTIPASS SAR PROCESSING FOR ICE SHEET VERTICAL VELOCITY AND TOMOGRAPHY MEASUREMENTSWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
James Stiles, ChairJohn Paden (Co-Chair)
Christopher Allen
Shannon Blunt
Emily Arnold
Abstract
We apply differential interferometric synthetic aperture radar (DInSAR) techniques to data from the Multichannel Coherent Radar Depth Sounder (MCoRDS) to measure the vertical displacement of englacial layers within an ice sheet. DInSAR’s accuracy is usually on the order of a small fraction of the wavelength (e.g., millimeter to centimeter precision is typical) in monitoring displacement along the radar line of sight (LOS). Ground-based Autonomous phase-sensitive Radio-Echo Sounder (ApRES) units have demonstrated the ability to precisely measure the relative vertical velocity by taking multiple measurements from the same location on the ice. Airborne systems can make a similar measurement but can suffer from spatial baseline errors since it is generally impossible to fly over the same stretch of ice on each pass with enough precision to ignore the spatial baseline. In this work, we compensate for spatial baseline errors using precise trajectory information and estimates of the cross-track layer slope using direction of arrival estimation. The current DInSAR algorithm is applied to airborne radar depth sounder data to produce results for flights near Summit camp and the EGIG (Expéditions Glaciologiques Internationales au Groenland) line in Greenland using the CReSIS toolbox. The current approach estimates the baseline error in multiple steps. Each step has dependencies on all the values to be estimated. To overcome this drawback, we have implemented a maximum likelihood estimator that jointly estimates the vertical velocity, the cross-track internal layer slope, and the unknown baseline error due to GPS and INS (Inertial Navigation System) errors. We incorporate the Lliboutry parametric model for vertical velocity into the maximum likelihood estimator framework.
To improve the direction of arrival estimation, we explore the use of focusing matrices against other wideband direction of arrival methods, such as wideband MLE, wideband MUSIC, and wideband MVDR, by comparing the mean squared error of the DOA estimates.
Dalton Brucker-Hahn
Mishaps in Microservices: Improving Microservice Architecture Security Through Novel Service Mesh CapabilitiesWhen & Where:
Nichols Hall, Room 129, Ron Evans Apollo Auditorium
Committee Members:
Alex Bardas, ChairDrew Davidson
Fengjun Li
Bo Luo
Huazhen Fang
Abstract
Shifting trends in modern software engineering and cloud computing have pushed system designs to leverage containerization and develop their systems into microservice architectures. While microservice architectures emphasize scalability and ease-of-development, the issue of microservice explosion has emerged, stressing hosting environments and generating new challenges within this domain. Service meshes, the latest in a series of developments, are being adopted to meet these needs. Service meshes provide separation of concerns between microservice development and the operational concerns of microservice deployments, such as service discovery and networking. However, despite the benefits provided by service meshes, the security demands of this domain are unmet by the current state-of-art offerings.
Through a series of experimental trials in a service mesh testbed, we demonstrate a need for improved security mechanisms in the state-of-art offerings of service meshes. After deriving a series of domain-conscious recommendations to improve the longevity and flexibility of service meshes, we design and implement our proof-of-concept service mesh system ServiceWatch. By leveraging a novel verification-in-the-loop scheme, we provide the capability for service meshes to provide holistic monitoring and management of the microservice deployments they host. Further, through frequent, automated rotations of security artifacts (keys, certificates, and tokens), we allow the service mesh to automatically isolate and remove microservices that violate the defined network policies of the service mesh, requiring no system administrator intervention. Extending this proof-of-concept environment, we design and implement a prototype workflow called CloudCover. CloudCover incorporates our verification-in-the-loop scheme and leverages existing tools, allowing easy adoption of these novel security mechanisms into modern systems. Under a realistic and relevant threat model, we show how our design choices and improvements are both necessary and beneficial to real-world deployments. By examining network packet captures, we provide a theoretical analysis of the scalability of these solutions in real-world networks. We further extend these trials experimentally using an independently managed and operated cloud environment to demonstrate the practical scalability of our proposed designs to large-scale software systems. Our results indicate that the overhead introduced by ServiceWatch and CloudCover are acceptable for real-world deployments. Additionally, the security capabilities provided effectively mitigate threats present within these environments.