Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Alfred Fontes

Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope Modulations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.

A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal. 

The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.


Audrey Mockenhaupt

Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target Recognition

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jon Owen


Abstract

Pending.


Rich Simeon

Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Erik Perrins, Chair
Shannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin

Abstract

The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.

A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.

Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.


Mohammad Ful Hossain Seikh

AAFIYA: Antenna Analysis in Frequency-domain for Impedance and Yield Assessment

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Jim Stiles, Chair
Rachel Jarvis
Alessandro Salandrino


Abstract

This project presents AAFIYA (Antenna Analysis in Frequency-domain for Impedance and Yield Assessment), a modular Python toolkit developed to automate and streamline the characterization and analysis of radiofrequency (RF) antennas using both measurement and simulation data. Motivated by the need for reproducible, flexible, and publication-ready workflows in modern antenna research, AAFIYA provides comprehensive support for all major antenna metrics, including S-parameters, impedance, gain and beam patterns, polarization purity, and calibration-based yield estimation. The toolkit features robust data ingestion from standard formats (such as Touchstone files and beam pattern text files), vectorized computation of RF metrics, and high-quality plotting utilities suitable for scientific publication.

Validation was carried out using measurements from industry-standard electromagnetic anechoic chamber setups involving both Log Periodic Dipole Array (LPDA) reference antennas and Askaryan Radio Array (ARA) Bottom Vertically Polarized (BVPol) antennas, covering a frequency range of 50–1500 MHz. Key performance metrics, such as broadband impedance matching, S11 and S21 related calculations, 3D realized gain patterns, vector effective lengths,  and cross-polarization ratio, were extracted and compared against full-wave electromagnetic simulations (using HFSS and WIPL-D). The results demonstrate close agreement between measurement and simulation, confirming the reliability of the workflow and calibration methodology.

AAFIYA’s open-source, extensible design enables rapid adaptation to new experiments and provides a foundation for future integration with machine learning and evolutionary optimization algorithms. This work not only delivers a validated toolkit for antenna research and pedagogy but also sets the stage for next-generation approaches in automated antenna design, optimization, and performance analysis.


Soumya Baddham

Battling Toxicity: A Comparative Analysis of Machine Learning Models for Content Moderation

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

With the exponential growth of user-generated content, online platforms face unprecedented challenges in moderating toxic and harmful comments. Due to this, Automated content moderation has emerged as a critical application of machine learning, enabling platforms to ensure user safety and maintain community standards. Despite its importance, challenges such as severe class imbalance, contextual ambiguity, and the diverse nature of toxic language often compromise moderation accuracy, leading to biased classification performance.

This project presents a comparative analysis of machine learning approaches for a Multi-Label Toxic Comment Classification System using the Toxic Comment Classification dataset from Kaggle.  The study examines the performance of traditional algorithms, such as Logistic Regression, Random Forest, and XGBoost, alongside deep architectures, including Bi-LSTM, CNN-Bi-LSTM, and DistilBERT. The proposed approach utilizes word-level embeddings across all models and examines the effects of architectural enhancements, hyperparameter optimization, and advanced training strategies on model robustness and predictive accuracy.

The study emphasizes the significance of loss function optimization and threshold adjustment strategies in improving the detection of minority classes. The comparative results reveal distinct performance trade-offs across model architectures, with transformer models achieving superior contextual understanding at the cost of computational complexity. At the same time, deep learning approaches(LSTM models) offer efficiency advantages. These findings establish evidence-based guidelines for model selection in real-world content moderation systems, striking a balance between accuracy requirements and operational constraints.


Manu Chaudhary

Utilizing Quantum Computing for Solving Multidimensional Partial Differential Equations

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Esam El-Araby, Chair
Perry Alexander
Tamzidul Hoque
Prasad Kulkarni
Tyrone Duncan

Abstract

Quantum computing has the potential to revolutionize computational problem-solving by leveraging the quantum mechanical phenomena of superposition and entanglement, which allows for processing a large amount of information simultaneously. This capability is significant in the numerical solution of complex and/or multidimensional partial differential equations (PDEs), which are fundamental to modeling various physical phenomena. There are currently many quantum techniques available for solving partial differential equations (PDEs), which are mainly based on variational quantum circuits. However, the existing quantum PDE solvers, particularly those based on variational quantum eigensolver (VQE) techniques, suffer from several limitations. These include low accuracy, high execution times, and low scalability on quantum simulators as well as on noisy intermediate-scale quantum (NISQ) devices, especially for multidimensional PDEs.

 In this work, we propose an efficient and scalable algorithm for solving multidimensional PDEs. We present two variants of our algorithm: the first leverages finite-difference method (FDM), classical-to-quantum (C2Q) encoding, and numerical instantiation, while the second employs FDM, C2Q, and column-by-column decomposition (CCD). Both variants are designed to enhance accuracy and scalability while reducing execution times. We have validated and evaluated our proposed concepts using a number of case studies including multidimensional Poisson equation, multidimensional heat equation, Black Scholes equation, and Navier-Stokes equation for computational fluid dynamics (CFD) achieving promising results. Our results demonstrate higher accuracy, higher scalability, and faster execution times compared to VQE-based solvers on noise-free and noisy quantum simulators from IBM. Additionally, we validated our approach on hardware emulators and actual quantum hardware, employing noise mitigation techniques. This work establishes a practical and effective approach for solving PDEs using quantum computing for engineering and scientific applications.


Alex Manley

Taming Complexity in Computer Architecture through Modern AI-Assisted Design and Education

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Tamzidul Hoque
Prasad Kulkarni
Mohammad Alian

Abstract

The escalating complexity inherent in modern computer architecture presents significant challenges for both professional hardware designers and students striving to gain foundational understanding. Historically, the steady improvement of computer systems was driven by transistor scaling, predictable performance increases, and relatively straightforward architectural paradigms. However, with the end of traditional scaling laws and the rise of heterogeneous and parallel architectures, designers now face unprecedented intricacies involving power management, thermal constraints, security considerations, and sophisticated software interactions. Prior tools and methodologies, often reliant on complex, command-line driven simulations, exacerbate these challenges by introducing steep learning curves, creating a critical need for more intuitive, accessible, and efficient solutions. To address these challenges, this thesis introduces two innovative, modern tools.

The first tool, SimScholar, provides an intuitive graphical user interface (GUI) built upon the widely-used gem5 simulator. SimScholar significantly simplifies the simulation process, enabling students and educators to more effectively engage with architectural concepts through a visually guided environment, both reducing complexity and enhancing conceptual understanding. Supporting SimScholar, the gem5 Extended Modules API (gEMA) offers streamlined backend integration with gem5, ensuring efficient communication, modularity, and maintainability.

The second contribution, gem5 Co-Pilot, delivers an advanced framework for architectural design space exploration (DSE). Co-Pilot integrates cycle-accurate simulation via gem5, detailed power and area modeling through McPAT, and intelligent optimization assisted by a large language model (LLM). Central to Co-Pilot is the Design Space Declarative Language (DSDL), a Python-based domain-specific language that facilitates structured, clear specification of design parameters and constraints.

Collectively, these tools constitute a comprehensive approach to taming complexity in computer architecture, offering powerful, user-friendly solutions tailored to both educational and professional settings.


Past Defense Notices

Dates

Jonathan Owen

Real-Time Cognitive Sense-and-Notch Radar

When & Where:


Nichols Hall, Room 129, Ron Evans Apollo Auditorium

Committee Members:

Shannon Blunt, Chair
Chris Allen
Carl Leuschen
James Stiles
Zsolt Talata

Abstract

Spectrum sensing and transmit waveform frequency notching is a form of cognitive radar that seeks to reduce mutual interference with other spectrum users in a cohabitated band. With the reality of increasing radio frequency (RF) spectral congestion, radar systems capable of dynamic spectrum sharing are needed. The cognitive sense-and-notch (SAN) emission strategy is experimentally demonstrated as an effective way to reduce the interference that the spectrum sharing radar causes to other in-band users. The physical radar emission is based on a random FM waveform structure possessing attributes that are inherently robust to range-Doppler sidelobes. To contend with dynamic interference the transmit notch may be required to move during the coherent processing interval (CPI), which introduces a nonstationarity effect that results in increased residual clutter after cancellation. The nonstationarity effect is characterized and compensated for using computationally efficient processing methods. The steps from initial analysis of cognitive system performance to implementation of sense-and-notch radar spectrum sharing in real-time are discussed.


Nick Kellerman

A MISO Frequency Diverse Array Implementation

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Chris Allen
Shannon Blunt
James Stiles

Abstract

Estimating the spatial angle of arrival for a received radar signal traditionally entails measurements across multiple antenna elements. Spatially diverse Multiple Input Multiple Output (MIMO) emission structures, such as the Frequency Diverse Array (FDA), provide waveform separability to achieve spatial estimation without the need for multiple receive antenna elements. A low complexity Multiple Input Single Output (MISO) radar system leveraging the FDA emission structure coupled with the Linear Frequency Modulated Continuous Wave (LFMCW) waveform is experimentally demonstrated that estimates range, Doppler and spatial angle information of the illuminated scene using a single receiver antenna element. In comparison to well-known spatially diverse emission structures (i.e., Doppler Division Multiple Access (DDMA) and Time Division Multiple Access (TDMA)), LFMCW-FDA is shown to retain the full range and Doppler unambiguous spaces at the cost of a reduced range resolution. To combat the degraded range performance, an adaptive algorithm is introduced with initial results showing the ability to improve separability of closely spaced scatterers in range and angle. With the persistent illumination achieved by the emission structure, demonstrated performance, and low complexity architecture, the LFMCW-FDA system is shown to have attractive features for use in a low-resolution search radar context.


Christian Jones

Robust and Efficient Structure-Based Radar Receive Processing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Shannon Blunt, Chair
Chris Allen
Suzanne Shontz
James Stiles
Zsolt Talata

Abstract

Legacy radar systems largely rely on repeated emission of a linear frequency modulated (LFM) or chirp waveform to ascertain scattering information from an environment. The prevalence of these chirp waveforms largely stems from their simplicity to generate, process, and the general robustness they provide towards hardware effects. However, this traditional design philosophy often lacks the flexibility and dimensionality needed to address the dynamic “complexification” of the modern radio frequency (RF) environment or achieve current operational requirements where unprecedented degrees of sensitivity, maneuverability, and adaptability are necessary.

Over the last couple of decades analog-to-digital and digital-to-analog technologies have advanced exponentially, resulting in tremendous design degrees of freedom and arbitrary waveform generation (AWG) capabilities that enable sophisticated design of emissions to better suit operational requirements. However, radar systems typically require high powered amplifiers (HPA) to contend with the two-way propagation. Thus, transmitter-amenable waveforms are effectively constrained to be both spectrally contained and constant amplitude, resulting in a non-convex NP-hard design problem.

While determining the global optimal waveform can be intractable for even modest time-bandwidth products (TB), locally optimal transmitter-amenable solutions that are “good enough” are often readily available. However, traditional matched filtering may not satisfy operational requirements for these sub-optimal emissions. Using knowledge of the transmitter-receiver chain, a discrete linear model can be formed to express the relationship between observed measurements and the complex scattering of the environment. This structured representation then enables more sophisticated least-square and adaptive estimation techniques to better satisfy operational needs, improve estimate fidelity, and extend dynamic range.

However, radar dimensionality can be enormous and brute force implementations of these techniques may have unwieldy computational burden on even cutting-edge hardware. Additionally, a discrete linear representation is fundamentally an approximation of the dynamic continuous physical reality and model errors may induce bias, create false detections, and limit dynamic range. As such, these structure-based approaches must be both computationally efficient and robust to reality.

Here several generalized discrete radar receive models and structure-based estimation schemes are introduced. Modifications and alternative solutions are then proposed to improve estimate fidelity, reduce computational complexity, and provide further robustness to model uncertainty.


Archana Chalicheemala

A Machine Learning Study using Gene Expression Profiles to Distinguish Patients with Non-Small Cell Lung Cancer

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

Early diagnosis can effectively treat non-small cell lung cancer (NSCLC). Lung cancer cells usually have altered gene expression patterns compared to normal cells, which can be utilized to predict cancer through gene expression tests. This study analyzed gene expression values measured from 15227-probe microarray, and 290 patients consisting of cancer and control groups, to find relations between the gene expression features and lung cancer. The study explored k-means, statistical tests, and deep neural networks to obtain optimal feature representations and achieved the highest accuracy of 82%. Furthermore, a bipartite graph was built using the Bio Grid database and gene expression values, where the probe-to-probe relationship based on gene relevance was leveraged to enhance the prediction performance.


Yoganand Pitta

Insightful Visualization: An Interactive Dashboard Uncovering Disease Patterns in Patient Healthcare Data

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Prasad Kulkarni
Hongyang Sun


Abstract

As Electronic Health Records (EHRs) become more available, there is increasing interest in discovering hidden disease patterns by leveraging cutting-edge data visualization techniques, such as graph-based knowledge representation and interactive graphical user interfaces (GUIs). In this project, we have developed a web-based interactive EHR analytics and visualization tool to provide healthcare professionals with valuable insights that can ultimately improve the quality and cost-efficiency of patient care. Specifically, we have developed two visualization panels: one for the intelligence of individual patients and the other for the relevance among diseases. For individual patients, we capture the similarity between them by linking them based on their relatedness in diagnosis. By constructing a graph representation of patients based on this similarity, we can identify patterns and trends in patient data that may not be apparent through traditional methods. For disease relationships, we provide an ontology graph for the specific diagnosis (ICD10 code), which helps to identify ancestors and predecessors of a particular diagnosis. Through the demonstration of this dashboard, we show that this approach can provide valuable insights to better understand patient outcomes with an informative and user-friendly web interface.

 


Brandon Ravenscroft

Spectral Cohabitation and Interference Mitigation via Physical Radar Emissions

When & Where:


Nichols Hall, Room 129, Ron Evans Apollo Auditorium

Committee Members:

Shannon Blunt, Chair
Chris Allen
Erik Perrins
James Stiles
Chris Depcik

Abstract

Auctioning of frequency bands to support growing demand for high bandwidth 5G communications is driving research into spectral cohabitation strategies for next generation radar systems. The loss of radio frequency (RF) spectrum once designated for radar operation is forcing radar systems to either learn how to coexist in these frequency spectrum bands, without causing mutual interference, or move to other bands of the spectrum, the latter being the more undesirable choice. Two methods of spectral cohabitation are presented in this work, each taking advantage of recent developments in non-repeating, random FM (RFM) waveforms. RFM waveforms are designed via one of many different optimization procedures to have favorable radar waveform properties while also readily incorporating agile spectrum notches. The first method of spectral cohabitation uses these spectral notches to avoid narrow-band RF interference (RFI) in the form of other spectrum users residing in the same band as the radar system, allowing both to operate while minimizing mutual interference. The second method of spectral cohabitation uses spectral notches, along with an optimization procedure, to embed a communications signal into a dual-function radar/communications (DFRC) emission, allowing one waveform to serve both functions simultaneously. Results of simulation and open-air experimentation with physically realized, spectrally notched and DFRC emissions are shown which demonstrate the efficacy of these two methods of spectral cohabitation.


Divya Harshitha Challa

Crop Prediction Based on Soil Classification using Machine Learning with Classifier Ensembling

When & Where:


Zoom Meeting, please email jgrisafe@ku.edu for defense link.

Committee Members:

Prasad Kulkarni, Chair
David Johnson
Hongyang Sun


Abstract

Globally, agriculture is the most significant source, which is the backbone of any country, and is an emerging field of research these days. There are many different types of soil, and each type has different characteristics for crops. Different methods and models are used daily in this region to increase yields. The macronutrient and micronutrient content of the soil, which is also a parametric representation of various climatic conditions like rain, humidity, temperature, and the soil's pH, is largely responsible for the crop's growth. Consequently, farmers are unable to select the appropriate crops depending on environmental and soil factors. The method of manually predicting the selection of the appropriate crops on land has frequently failed. We use machine learning techniques in this system to recommend crops based on soil classification or soil series. A comparative analysis of several popular classification algorithms, including K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Support Vector Machines (SVM), Gaussian Naive Bayes (GNB), Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost), and Voting Ensemble classifiers, is carried out in this work to assist in recommending the cultivable crop(s) that are most suitable for a particular piece of land depending on the characteristics of the soil and environment. To achieve our goal, we collected and preprocessed a large dataset of crop yield and environmental data from multiple sources. Our results show that the voting ensemble classifier outperforms the other classifiers in terms of prediction accuracy, achieving an accuracy of 94.67%. Feature importance analysis reveals that weather conditions such as temperature and rainfall, and fertilizer usage are the most critical factors in predicting crop yield. 


Oluwanisola Ibikunle

DEEP LEARNING ALGORITHMS FOR RADAR ECHOGRAM LAYER TRACKING

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Shannon Blunt, Chair
John Paden (Co-Chair)
Carl Leuschen
Jilu Li
James Stiles

Abstract

The accelerated melting of ice sheets in the polar regions of the world, specifically in Greenland and Antarctica, due to contemporary climate warming is contributing to global sea level rise. To understand and quantify this phenomenon, airborne radars have been deployed to create echogram images that map snow accumulation patterns in these regions. Using advanced radar systems developed by the Center for Remote Sensing and Integrated Systems (CReSIS), a significant amount (1.5 petabytes) of climate data has been collected. However, the process of extracting ice phenomenology information, such as accumulation rate, from the data is limited. This is because the radar echograms require tracking of the internal layers, a task that is still largely manual and time-consuming. Therefore, there is a need for automated tracking.

Machine learning and deep learning algorithms are well-suited for this problem given their near-human performance on optical images. Moreover, the significant overlap between classical radar signal processing and machine learning techniques suggests that fusion of concepts from both fields can lead to optimized solutions for the problem. However, supervised deep learning algorithms suffer the circular problem of first requiring large amounts of labeled data to train the models which do not exist currently.

In this work, we propose custom algorithms, including supervised, semi-supervised, and self-supervised approaches, to deal with the limited annotated data problem to achieve accurate tracking of radiostratigraphic layers in echograms. Firstly, we propose an iterative multi-class classification algorithm, called “Row Block,” which sequentially tracks internal layers from the top to the bottom of an echogram given the surface location. We aim to use the trained iterative model in an active learning paradigm to progressively increase the labeled dataset. We also investigate various deep learning semantic segmentation algorithms by casting the echogram layer tracking problem as a binary and multiclass classification problem. These require post-processing to create the desired vector-layer annotations, hence, we propose a custom connected-component algorithm as a post-processing routine. Additionally, we propose end-to-end algorithms that avoid the post-processing to directly create annotations as vectors. Furthermore, we propose semi-supervised algorithms using weakly-labeled annotations and unsupervised algorithms that can learn the latent distribution of echogram snow layers while reconstructing echogram images from a sparse embedding representation.

A concurrent objective of this work is to provide the deep learning and science community with a large fully-annotated dataset. To achieve this, we propose synchronizing radar data with outputs from a regional climate model to provide a dataset with overlapping measurements that can enhance the performance of the trained models.


Jonathan Rogers

Faster than Thought Error Detection Using Machine Learning to Detect Errors in Brain Computer Interfaces

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Suzanne Shontz, Chair
Adam Rouse
Cuncong Zhong


Abstract

This research thesis seeks to use machine learning on data from invasive brain-computer interfaces (BCIs) in rhesus macaques to predict their state of movement during center-out tasks. Our research team breaks down movements into discrete states and analyzes the data using Linear Discriminant Analysis (LDA). We find that a simplified model that ignores the biological systems unpinning it can still detect the discrete state changes with a high degree of accuracy. Furthermore, when we account for underlying systems, our model achieved high levels of accuracy at speeds that ought to be imperceptible to the primate brain.


Abigail Davidow

Exploring the Gap Between Privacy and Utility in Automated Decision-Making

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Fengjun Li
Alexandra Kondyli


Abstract

The rapid rise of automated decision-making systems has left a gap in researchers’ understanding of how developers and consumers balance concerns about the privacy and accuracy of such systems against their utility.  With our goal to cover a broad spectrum of concerns from various angles, we initiated two experiments on the perceived benefit and detriment of interacting with automated decision-making systems. We refer to these two experiments as the Patch Wave study and Automated Driving study. This work approaches the study of automated decision making at different perspectives to help address the gap in empirical data on consumer and developer concerns. In our Patch Wave study, we focus on developers’ interactions with automated pull requests that patch widespread vulnerabilities on GitHub. The Automated Driving study explores older adults’ perceptions of data privacy in highly automated vehicles. We find quantitative and qualitative differences in the way that our target populations view automated decision-making systems compared to human decision-making. In this work, we detail our methodology for these studies, experimental results, and recommendations for addressing consumer and developer concerns.