Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Vinay Kumar Reddy Budideti

NutriBot: An AI-Powered Personalized Nutrition Recommendation Chatbot Using Rasa

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Victor Frost
Prasad Kulkarni


Abstract

In recent years, the intersection of Artificial Intelligence and healthcare has paved the way for intelligent dietary assistance. NutriBot is an AI-powered chatbot developed using the Rasa framework to deliver personalized nutrition recommendations based on user preferences, diet types, and nutritional goals. This full-stack system integrates Rasa NLU, a Flask backend, the Nutritionix API for real-time food data, and a React.js + Tailwind CSS frontend for seamless interaction. The system is containerized using Docker and deployable on cloud platforms like GCP.

The chatbot supports multi-turn conversations, slot-filling, and remembers user preferences such as dietary restrictions or nutrient focus (e.g., high protein). Evaluation of the system showed perfect intent and entity recognition accuracy, fast API response times, and user-friendly fallback handling. While NutriBot currently lacks persistent user profiles and multilingual support, it offers a highly accurate, scalable framework for future extensions such as fitness tracker integration, multilingual capabilities, and smart assistant deployment.


Arun Kumar Punjala

Deep Learning-Based MRI Brain Tumor Classification: Evaluating Sequential Architectures for Diagnostic Accuracy

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

Accurate classification of brain tumors from MRI scans plays a vital role in assisting clinical diagnosis and treatment planning. This project investigates and compares three deep learning-based classification approaches designed to evaluate the effectiveness of integrating recurrent layers into conventional convolutional architectures. Specifically, a CNN-LSTM model, a CNN-RNN model with GRU units, and a baseline CNN classifier using EfficientNetB0 are developed and assessed on a curated MRI dataset.

The CNN-LSTM model uses ResNet50 as a feature extractor, with spatial features reshaped and passed through stacked LSTM layers to explore sequential learning on static medical images. The CNN-RNN model implements TimeDistributed convolutional layers followed by GRUs, examining the potential benefits of GRU-based modeling. The EfficientNetB0-based CNN model, trained end-to-end without recurrent components, serves as the performance baseline.

All three models are evaluated using training accuracy, validation loss, confusion matrices, and class-wise performance metrics. Results show that the CNN-LSTM architecture provides the most balanced performance across tumor types, while the CNN-RNN model suffers from mild overfitting. The EfficientNetB0 baseline offers stable and efficient classification for general benchmarking.


Mahmudul Hasan

Assertion-Based Security Assessment of Hardware IP Protection Methods

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

Combinational and sequential locking methods are promising solutions for protecting hardware intellectual property (IP) from piracy, reverse engineering, and malicious modifications by locking the functionality of the IP based on a secret key. To improve their security, researchers are developing attack methods to extract the secret key.  

While the attacks on combinational locking are mostly inapplicable for sequential designs without access to the scan chain, the limited applicable attacks are generally evaluated against the basic random insertion of key gates. On the other hand, attacks on sequential locking techniques suffer from scalability issues and evaluation of improperly locked designs. Finally, while most attacks provide an approximately correct key, they do not indicate which specific key bits are undetermined. This thesis proposes an oracle-guided attack that applies to both combinational and sequential locking without scan chain access. The attack applies light-weight design modifications that represent the oracle using a finite state machine and applies an assertion-based query of the unlocking key. We have analyzed the effectiveness of our attack against 46 sequential designs locked with various classes of combinational locking including random, strong, logic cone-based, and anti-SAT based. We further evaluated against a sequential locking technique using 46 designs with various key sequence lengths and widths. Finally, we expand our framework to identify undetermined key bits, enabling complementary attacks on the smaller remaining key space.


Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Past Defense Notices

Dates

YAO HE

Characteristics of SOA-based Tunable Ring Laser for OCT Application

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Swapan Chakrabarti
Luke Huan


Abstract


MARTIN KUEHNHAUSEN

A Framework for Knowledge Derivation Incorporating Trust and Quality of Data

When & Where:


246 Nichols Hall

Committee Members:

Victor Frost, Chair
Luke Huan
Bo Luo
Gary Minden
Tyrone Duncan

Abstract


JOHN GIBBONS

Modeling Content Lifespan on Social Networks Using Dating Mining

When & Where:


Eaton Hall, Room 1

Committee Members:

Arvin Agah, Chair
Perry Alexander
Jerzy Grzymala-Busse
James Miller
Brian Potetz

Abstract


WESLEY PECK

Hardware/Software Co-Design via Specification Refinement

When & Where:


129 Nichols Hall

Committee Members:

Perry Alexander, Chair
Xin Fu
Andy Gill
Prasad Kulkarni
Caroline Bennett*

Abstract


WESLEY PECK

Hardware/Software Co-Design via Specification Refinement

When & Where:


129 Nichols Hall

Committee Members:

Perry Alexander, Chair
Xin Fu
Andy Gill
Prasad Kulkarni
Caroline Bennett*

Abstract


PATRICK CLARK

Novel Data Structures and Algorithms for Modeling, Analysis, and Human-Comprehension of Firewall Policies

When & Where:


2001B Eaton Hall

Committee Members:

Arvin Agah, Chair
Swapan Chakrabarti
Jerzy Grzymala-Busse
Bo Luo
Prajna Dhar*

Abstract


JUSTIN METCALF

Detection Strategies and Intercept Metrics for Intra-Pulse Radar-Embedded Communications

When & Where:


317 Nichols Hall

Committee Members:

Shannon Blunt, Chair
Erik Perrins
Glenn Prescott


Abstract


ASHWINI SHIKARIPUR NADIG

Statistical Approaches to Inferring Object Shape form Single Images

When & Where:


2001B Eaton Hall

Committee Members:

Brian Potetz, Chair
Shannon Blunt
Xue-Wen Chen
Luke Huan
Paul Selden*

Abstract


HONGLIANG FEI

Learning from the Data with Structured Input and Output

When & Where:


317 Nichols Hall

Committee Members:

Luke Huan, Chair
Arvin Agah
Xue-Wen Chen
Bo Luo
Hongguo Xu*

Abstract


BING HAN

etecting Cancer-Related Genes and Gene-Gene Interactions by Machine Learning Methods

When & Where:


317 Nichols Hall

Committee Members:

Xue-Wen Chen, Chair
Arvin Agah
Jerzy Grzymala-Busse
Luke Huan
Gerald Lushington

Abstract