Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


RokunuzJahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior  by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.

This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.


Tanvir Hossain

Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based Platform

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.


Hara Madhav Talasila

Radiometric Calibration of Radar Depth Sounder Data Products

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Carl Leuschen, Chair
Patrick McCormick
James Stiles
Jilu Li
Leigh Stearns

Abstract

Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.

As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.


Christopher Ord

A Hardware-Agnostic Simultaneous Transmit And Receive (STAR) Architecture for the Transmission of Non-Repeating FMCW Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rachel Jarvis, Chair
Shannon Blunt
Patrick McCormick


Abstract

With the increasing congestion of the usable RF spectrum, it is increasingly necessary for communication and radar systems to share the same frequencies without disturbing one another. To accomplish this, research has focused on designing a class of non-repeating radar waveforms that appear as noise at the receiver of uncooperative systems, but the peak power from high-power pulsed systems can still overwhelm nearby in-band systems. Therefore, to minimize peak power while maximizing the total energy on target, radar systems must transition to operating at a 100% duty cycle, which inherently requires Simultaneous Transmit and Receive (STAR) operation.

One inherent difficulty when operating monostatic STAR systems is the direct path coupling interference that can saturate a number of components in the radar’s receive chain, which makes digital processing methods that remove this interference ineffective. This thesis proposes a method to reduce the self-interference between the radar’s transmitter in receiver prior to the receiver’s sensitive components to increase the power that the radar can transmit at. By using a combination of tests that manipulate the timing, phase, and magnitude of a secondary waveform that is injected into the radar just before the receiver, upwards of 35.0 dB of self-interference cancellation is achieved for radar waveforms with bandwidths of up to 100 MHz at both S-band and X-band in both simulation and open-air testing.


Past Defense Notices

Dates

Saleh Mohamed Eshtaiwi

A New Three Phase Photovoltaic Energy Harvesting System for Generation of Balanced Voltages in Presence of Partial Shading, Module Mismatch, and Unequal Maximum Power Points

When & Where:


2001 B Eaton Hall

Committee Members:

Reza Ahmadi , Chair
Christopher Allen
Jerzy Grzymala-Busse
Rongqing Hui
Elaina Sutley

Abstract

The worldwide energy demand is growing quickly, with an anticipated rate of growth of 48% from 2012 to 2040. Consequently, investments in all forms of renewable energy generation systems have been growing rapidly. Increased use of clean renewable energy resources such as hydropower, wind, solar, geothermal, and biomass is expected to noticeably renewable energy resources alleviate many present environmental concerns associated with fossil fuel-based energy generation.  In recent years, wind and solar energies are gained the most attention among all other renewable resources. As a result, both have become the target of extensive research and development for dynamic performance optimization, cost reduction, and power reliability assurance.  

The performance of Photovoltaic (PV) systems is highly affected by environmental and ambient conditions such as irradiance fluctuations and temperature swings. Furthermore, the initial capital cost for establishing the PV infrastructure is very high. Therefore, its essential that the PV systems always harvest the maximum energy possible by operating at the most efficient operating point, i.e. Maximum Power Point (MPP), to increase conversion efficiency and thus result in lowest cost of captured energy.

The dissertation is an effort to develop a new PV conversion system for large scale PV grid-connected systems which provides efficacy enhancements compared to conventional systems by balancing voltage mismatches between the PV modules. Hence, it analyzes the theoretical models for three selected DC/DC converters. To accomplish this goal, this work first introduces a new adaptive maximum PV energy extraction technique for PV grid-tied systems. Then, it supplements the proposed technique with a global search approach to distinguish absolute maximum power peaks within multi-peaks in case of partially shaded PV module conditions. Next, it proposes an adaptive MPP tracking (MPPT) strategy based on the concept of model predictive control (MPC) in conjunction with a new current sensor-less approach to reduce the number of required sensors in the system.  Finally, this work proposes a power balancing technique for injection of balanced three-phase power into the grid using a Cascaded H-Bridge (CHB) converter topology which brings together the entire system and results in the final proposed PV power system. The resulting PV system offers enhanced reliability by guaranteeing effective system operation under unbalanced phase voltages caused by severe partial shading.

The developed grid connected PV solar system is evaluated using simulations under realistic dynamic ambient conditions, partial shading, and fully shading conditions and the obtained results confirm its effectiveness and merits comparted to conventional systems.


Shruti Goel

DDoS Intrusion Detection using Machine Learning Techniques

When & Where:


250 Nichols Hall

Committee Members:

Alex Bardas, Chair
Fengjun Li
Bo Luo


Abstract

Organizations are becoming more exposed to security threats due to shift towards cloud infrastructure and IoT devices. One growing category of cyber threats is Distributes Denial of Service (DDoS) attacks. It is hard to detect DDoS attacks due to evolving attack patterns and increasing data volume. So, creating filter rules manually to distinguish between legitimate and malicious traffic is a complex task. Current work explores a supervised machine learning based approach for DDoS detection. The proposed model uses a step forward feature selection method to extract 15 best network features and random forest classifier for detecting DDoS traffic. This solution can be used as an automatic detection algorithm for DDoS mitigation pipelines implemented in the most up-to-date DDoS security solutions.


Hayder Almosa

Downlink Achievable Rate Analysis for FDD Massive MIMO Systems

When & Where:


129 Nichols Hall

Committee Members:

Erik Perrins , Chair
Lingjia Liu
Shannon Blunt
Rongqing Hui
Hongyi Cai

Abstract

Multiple-Input Multiple-Output (MIMO) systems with large-scale transmit antenna arrays, often called massive MIMO, are a very promising direction for 5G due to their ability to increase capacity and enhance both spectrum and energy efficiency. To get the benefit of massive MIMO systems, accurate downlink channel state information at the transmitter (CSIT) is essential for downlink beamforming and resource allocation. Conventional approaches to obtain CSIT for FDD massive MIMO systems require downlink training and CSI feedback. However, such training will cause a large overhead for massive MIMO systems because of the large dimensionality of the channel matrix. In this dissertation, we improve the performance of FDD massive MIMO networks in terms of downlink training overhead reduction, by designing an efficient downlink beamforming method and developing a new algorithm to estimate the channel state information based on compressive sensing techniques. First, we design an efficient downlink beamforming method based on partial CSI. By exploiting the relationship between uplink direction of arrivals (DoAs) and downlink direction of departures (DoDs), we derive an expression for estimated downlink DoDs, which will be used for downlink beamforming. Second, By exploiting the sparsity structure of downlink channel matrix, we develop an algorithm that selects the best features from the measurement matrix to obtain efficient CSIT acquisition that can reduce the downlink training overhead compared with conventional LS/MMSE estimators. In both cases, we compare the performance of our proposed beamforming method with traditional methods in terms of downlink achievable rate and simulation results show that our proposed method outperform the traditional beamforming methods.​


Naresh Kumar Sampath Kumar

Complexity of Rules Sets in Mining Incomplete Data Using Characteristic Sets and Generalized Maximal Consistent Blocks

When & Where:


2001 B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Prasad Kulkarni
Richard Wang


Abstract

The process of going through data to discover hidden connections and predict future trends has a long history. In this data-driven world, data mining is an important process to extract knowledge or insights from data in various forms. It explores the unknown credible patterns which are significant in solving many problems. There are quite a few techniques in data mining including classification, clustering, and prediction. We will discuss the classification, by using a technique called rule induction using four different approaches.

We compare the complexity of rule sets induced using characteristic sets and maximal consistent blocks. The complexity of rule sets is determined by the total number of rules induced for a given data set and the total number of conditions present in each rule. We used Incomplete Data sets to induce rules. These data sets have missing attribute values. Both methods were implemented and analyzed to check how it influences the complexity. Preliminary results suggest that the choice between characteristic sets and generalized maximal consistent blocks is inconsequential. But the cardinality of the rule sets is always smaller for incomplete data sets with “do not care” conditions. Thus, the choice between interpretations of the missing attribute value is more important than the choice between characteristic sets and generalized maximal consistent blocks.


Usman Sajid

ZiZoNet: A Zoom-In and Zoom-Out Mechanism for Crowd Counting in Static Images

When & Where:


246 Nichols Hall

Committee Members:

Guanghui Wang, Chair
Bo Luo
Heechul Yun


Abstract

As people gather during different social, political or musical events, automated crowd analysis can lead to effective and better management of such events to prevent any unwanted scene as well as avoid political manipulation of crowd numbers. Crowd counting remains an integral part of crowd analysis and also an active research area in the field of computer vision. Existing methods fail to perform where crowd density is either too high or too low in an image, thus resulting in either overestimation or underestimation. These methods also mix crowd-like cluttered background regions (e.g. tree leaves or small and continuous patterns) in images with actual crowd, resulting in further crowd overestimation. In this work, we present a novel deep convolutional neural network (CNN) based framework ZiZoNet for automated crowd counting in static images in very low to very high crowd density scenarios to address above issues. ZiZoNet consists of three modules namely Crowd Density Classifier (CDC), Decision Module (DM) and Count Regressor Module (CRM). The test image, divided into 224x224 patches, passes through crowd density classifier (CDC) that classifies each patch to a class label (no-crowd (NC), low-crowd (LC), medium-crowd (MC), high-crowd (HC)). Based on the CDC information and using either heuristic Rule-set Engine (RSE) or machine learning based Random Forest based Decision Block (RFDB), DM decides which mode (zoom-in, normal or zoom-out) this image should use for crowd counting. CRM then performs patch-wise crowd estimate for this image accordingly as decided or instructed by the DM module. Extensive experiments on three diverse and challenging crowd counting benchmarks (UCF-QNRF, ShanghaiTech, AHU-Crowd) show that our method outperforms current state-of-the-art models under most of the evaluation criteria.​


Ernesto Alexander Ramos

Tunable Surface Plasmon Dynamics

When & Where:


2001 B Eaton Hall

Committee Members:

Alessandro Salandrino, Chair
Christopher Allen
Rongqing Hui


Abstract

Due to their extreme spatial confinement, surface plasmon resonances show great potential in the design of future devices that would blur the boundaries between electronics and optics. Traditionally, plasmonic interactions are induced with geometries involving noble metals and dielectrics. However, accessing these plasmonic modes requires delicate election of material parameters with little margin for error, controllability, or room for signal bandwidth. To rectify this, two novel plasmonic mechanisms with a high degree of control are explored: For the near infrared region, transparent conductive oxides (TCOs) exhibit tunability not only in "static" plasmon generation (through material doping) but could also allow modulation on a plasmon carrier through external bias induced switching. These effects rely on the electron accumulation layer that is created at the interface between an insulator and a doped oxide. Here a rigorous study of the electromagnetic characteristics of these electron accumulation layers is presented. As a consequence of the spatially graded permittivity profiles of these systems it will be shown that these systems display unique properties. The concept of Accumulation-layer Surface Plasmons (ASP) is introduced and the conditions for the existence or for the suppression of surface-wave eigenmodes are analyzed. A second method could allow access to modes of arbitrarily high order. Sub-wavelength plasmonic nanoparticles can support an infinite discrete set of orthogonal localized surface plasmon modes, however only the lowest order resonances can be effectively excited by incident light alone. By allowing the background medium to vary in time, novel localized surface plasmon dynamics emerge. In particular, we show that these temporal permittivity variations lift the orthogonality of the localized surface plasmon modes and introduce coupling among different angular momentum states. Exploiting these dynamics, surface plasmon amplification of high order resonances can be achieved under the action of a spatially uniform optical pump of appropriate frequency.


Nishil Parmar

A Comparison of Quality of Rules Induced using Single Local Probabilistic Approximations vs Concept Probabilistic Approximations

When & Where:


1415A LEEP2

Committee Members:

Jerzy Grzymala-Busse, Chair
Prasad Kulkarni
Bo Luo


Abstract

This project report presents results of experiments on rule induction from incomplete data using probabilistic approximations. Mining incomplete data using probabilistic approximations is a well-established technique. Main goal of this report is to present research on a comparison carried out on two different approaches to mining incomplete data using probabilistic approximations: single local probabilistic approximations approach and concept probabilistic approximations. These approaches were implemented in python programming language and experiments were carried out on incomplete data sets with two interpretations of missing attribute values: lost values and do not care conditions. Our main objective was to compare concept and single local approximations in terms of the error rate computed using double hold-out method for validation. For our experiments we used seven incomplete data sets with many missing attribute values. The best results were accomplished by concept probabilistic approximations for five data sets and by single local probabilistic approximations for remaining two data sets.


Victor Berger da Silva

Probabilistic graphical techniques for automated ice-bottom tracking and comparison between state-of-the-art solutions

When & Where:


317 Nichols Hall

Committee Members:

Carl Leuschen, Chair
John Paden
Guanghui Wang


Abstract

Multichannel radar depth sounding systems are able to produce two-dimensional and three-dimensional imagery of the internal structure of polar ice sheets. One of the relevant features typically present in this imagery is the ice-bedrock interface, which is the boundary between the bottom of the ice-sheet and the bedrock underneath. Crucial information regarding the current state of the ice sheets, such as the thickness of the ice, can be derived if the location of the ice-bedrock interface is extracted from the imagery. Due to the large amount of data collected by the radar systems employed, we seek to automate the extraction of the ice-bedrock interface and allow for efficient manual corrections when errors occur in the automated method. We present improvements made to previously proposed solutions which pose feature extraction in polar radar imagery as an inference problem on a probabilistic graphical model. The improvements proposed here are in the form of novel image pre-processing steps and empirically-derived cost functions that allow for the integration of further domain-specific knowledge into the models employed. Along with an explanation of our modifications, we demonstrate the results obtained by our proposed models and algorithms, including significantly decreased mean error measurements such as a 47% reduction in average tracking error in the case of three-dimensional imagery. We also present the results obtained by several state-of-the-art ice-interface tracking solutions, and compare all automated results with manually-corrected ground-truth data. Furthermore, we perform a self-assessment of tracking results by analyzing the differences found between the automatically extracted ice-layers in cases where two separate radar measurements have been made at the same location.


Dain Vermaak

Visualizing, and Analyzing Student Progress on Learning Maps

When & Where:


1 Eaton Hall, Dean's Conference Room

Committee Members:

James Miller, Chair
Man Kong
Suzanne Shontz
Guanghui Wang
Bruce Frey

Abstract

A learning map is an unweighted directed graph containing relationships between discrete skills and concepts with edges defining the prerequisite hierarchy. They arose as a means of connecting student instruction directly to standards and curriculum and are designed to assist teachers in lesson planning and evaluating student response. As learning maps gain popularity there is an increasing need for teachers to quickly evaluate which nodes have been mastered by their students. Psychometrics is a field focused on measuring student performance and includes the development of processes used to link a student's response to multiple choice questions directly to their understanding of concepts. This dissertation focuses on developing modeling and visualization capabilities to enable efficient analysis of data pertaining to student understanding generated by psychometric techniques.

Such analysis naturally includes that done by classroom teachers. Visual solutions to this problem clearly indicate the current understanding of a student or classroom in such a way as to make suggestions that can guide future learning. In response to these requirements we present various experimental approaches which augment the original learning map design with targeted visual variables.

As well as looking forward, we also consider ways in which data visualization can be used to evaluate and improve existing teaching methods. We present several graphics based on modelling student progression as information flow. These methods rely on conservation of data to increase edge information, reducing the load carried by the nodes and encouraging path comparison.

In addition to visualization schemes and methods, we present contributions made to the field of Computer Science in the form of algorithms developed over the course of the research project in response to gaps in prior art. These include novel approaches to simulation of student response patterns, ranked layout of weighted directed graphs with variable edge widths, and enclosing certain groups of graph nodes in envelopes.

Finally, we present a final design which combines the features of key experimental approaches into a single visualization tool capable of meeting both predictive and validation requirements along with the methods used to measure the effectiveness and correctness of the final design.


Priyanka Saha

Complexity of Rule Sets Induced from Incomplete Data with Lost Values and Attribute-Concept Values

When & Where:


2001 B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Taejoon Kim
Cuncong Zhong


Abstract

Data is a very rich source of knowledge and information. However, special techniques need to be implemented in order to extract interesting facts and discover patterns in large data sets. This is achieved using the technique called Data Mining. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal to extract information from a data set and transform the information into a comprehensible structure for further use. Rule induction is a Data Mining technique in which formal rules are extracted from a set of observations. The rules induced may represent a full scientific model of the data, or merely represent local patterns in the data.

The data sets, however, is not always complete and might contain missing values. Data mining also provides techniques to handle the missing values in a data set. In this project, we’ve implemented lost value and attribute-concept value interpretations of incomplete data. Experiments were conducted on 176 datasets using three types of approximations (lower, middle and upper) of the concept and Modified Learning from Examples Module, version 2 (MLEM2) rule induction algorithm was used to induce rule sets.

The goal of the project was to prove that the complexity of rule sets derived from datasets having missing attributes is better for attribute-concept value interpretation compared to the lost value interpretation. The size of the rule set was always smaller for the attribute-concept value interpretation. Also, as a secondary objective, we tried to explore what type of approximation provides the smallest size of the rule sets.