Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Mahmudul Hasan

Assertion-Based Security Assessment of Hardware IP Protection Methods

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

Combinational and sequential locking methods are promising solutions for protecting hardware intellectual property (IP) from piracy, reverse engineering, and malicious modifications by locking the functionality of the IP based on a secret key. To improve their security, researchers are developing attack methods to extract the secret key.  

While the attacks on combinational locking are mostly inapplicable for sequential designs without access to the scan chain, the limited applicable attacks are generally evaluated against the basic random insertion of key gates. On the other hand, attacks on sequential locking techniques suffer from scalability issues and evaluation of improperly locked designs. Finally, while most attacks provide an approximately correct key, they do not indicate which specific key bits are undetermined. This thesis proposes an oracle-guided attack that applies to both combinational and sequential locking without scan chain access. The attack applies light-weight design modifications that represent the oracle using a finite state machine and applies an assertion-based query of the unlocking key. We have analyzed the effectiveness of our attack against 46 sequential designs locked with various classes of combinational locking including random, strong, logic cone-based, and anti-SAT based. We further evaluated against a sequential locking technique using 46 designs with various key sequence lengths and widths. Finally, we expand our framework to identify undetermined key bits, enabling complementary attacks on the smaller remaining key space.


Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


RokunuzJahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior  by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.

This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.


Tanvir Hossain

Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based Platform

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.


Hara Madhav Talasila

Radiometric Calibration of Radar Depth Sounder Data Products

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Carl Leuschen, Chair
Patrick McCormick
James Stiles
Jilu Li
Leigh Stearns

Abstract

Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.

As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.


Past Defense Notices

Dates

Charles Mohr

Design and Evaluation of Stochastic Processes as Physical Radar Waveforms

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Shannon Blunt, Chair
Christopher Allen
Carl Leuschen
James Stiles
Zsolt Talata

Abstract

Recent advances in waveform generation and in computational power have enabled the design and implementation of new complex radar waveforms. Still, even with these advances in computation, in a pulse agile mode, where the radar transmits unique waveforms at every pulse, the requirement to design physically robust waveforms which achieve good autocorrelation sidelobes, are spectrally contained, and have a constant amplitude envelope for high power operation, can require expensive computation equipment and can impede real time operation. This work addresses this concern in the context of FM noise waveforms which have been demonstrated in recent years in both simulation and in experiments to achieve low autocorrelation sidelobes through the high dimensionality of coherent integration when operating in a pulse agile mode. However while they are effective, the approaches to design these waveforms requires the optimization of each individual waveform making them subject to the concern above.

This dissertation takes a different approach. Since these FM noise waveforms are meant to be noise like in the first place, the waveforms here are instantiated as the sample functions of a stochastic process which has been specially designed to produce spectrally contained, constant amplitude waveforms with noise like cancellation of sidelobes. This makes the waveform creation process little more computationally expensive than pulling numbers from a random number generator (RNG) since the optimization designs a waveform generating function (WGF) itself rather than each waveform themselves. This goal is achieved by leveraging gradient descent optimization methods to reduce the expected frequency template error (EFTE) cost function for both the pulsed stochastic waveform generation (StoWGe) waveform model and a new CW version of StoWGe denoted CW-StoWGe. The effectiveness of these approaches and their ability to generate useful radar waveforms is analyzed using several stochastic waveform generation metrics developed here. The EFTE optimization is shown through simulation to produce WGFs which generate FM noise waveforms in both pulsed and CW modes which achieve good spectral containment and autocorrelation sidelobes. The resulting waveforms will be demonstrated in both loopback and in open-air experiments to be robust to physical implementation.


Michael Stees

Optimization-based Methods in High-Order Mesh Generation and Untangling

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Suzanne Shontz, Chair
Perry Alexander
Prasad Kulkarni
Jim Miller
Weizhang Huang

Abstract

High-order numerical methods for solving PDEs have the potential to deliver higher solution accuracy at a lower cost than their low-order counterparts.  To fully leverage these high-order computational methods, they must be paired with a discretization of the domain that accurately captures key geometric features.  In the presence of curved boundaries, this requires a high-order curvilinear mesh.  Consequently, there is a lot of interest in high-order mesh generation methods.  The majority of such methods warp a high-order straight-sided mesh through the following three step process.  First, they add additional nodes to a low-order mesh to create a high-order straight-sided mesh.  Second, they move the newly added boundary nodes onto the curved domain (i.e., apply a boundary deformation).  Finally, they compute the new locations of the interior nodes based on the boundary deformation.  We have developed a mesh warping framework based on optimal weighted combinations of nodal positions.  Within our framework, we develop methods for optimal affine and convex combinations of nodal positions, respectively.  We demonstrate the effectiveness of the methods within our framework on a variety of high-order mesh generation examples in two and three dimensions.  As with many other methods in this area, the methods within our framework do not guarantee the generation of a valid mesh.  To address this issue, we have also developed two high-order mesh untangling methods.  These optimization-based untangling methods formulate unconstrained optimization problems for which the objective functions are based on the unsigned and signed angles of the curvilinear elements.  We demonstrate the results of our untangling methods on a variety of two-dimensional triangular meshes.


Farzad Farshchi

Deterministic Memory Systems for Real-time Multicore Processors

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Heechul Yun, Chair
Esam Eldin Mohamed Aly
Prasad Kulkarni
Rodolfo Pellizzoni
Shawn Keshmiri

Abstract

With the emergence of autonomous systems such as self-driving cars and drones, the need for high-performance real-time embedded systems is increasing. On the other hand, the physics of the autonomous systems constraints size, weight, and power consumption (known as SWaP constraints) of the embedded systems. A solution to satisfy the need for high performance while meeting the SWaP constraints is to incorporate multicore processors in real-time embedded systems. However, unlike unicore processors, in multicore processors, the memory system is shared between the cores. As a result, the memory system performance varies widely due to inter-core memory interference. This can lead to over-estimating the worst-case execution time (WCET) of the real-time tasks running on these processors, and therefore, under-utilizing the computation resources. In fact, recent studies have shown that real-time tasks can be slowed down more than 300 times due to inter-core memory interference.

In this work, we propose novel software and hardware extensions to multicore processors to bound the inter-core memory interference in order to reduce the pessimism of WCET and to improve time predictability. We introduce a novel memory abstraction, which we call Deterministic Memory, that cuts across various layers of the system: the application, OS, and hardware. The key characteristic of Deterministic Memory is that the platform—the OS and hardware—guarantees small and tightly bounded worst-case memory access timing.  Additionally, we propose a drop-in hardware IP that enables bounding the memory interference by per-core regulation of the memory access bandwidth at fine-grained time intervals. This new IP, which we call the Bandwidth Regulation Unit (BRU), does not require significant changes to the processor microarchitecture and can be seamlessly integrated with the existing microprocessors. Moreover, BRU has the ability to regulate the memory access bandwidth of multiple cores collectively to improve bandwidth utilization. As for future work, we plan to further improve bandwidth utilization by extending BRU to recognize memory requests accessing different levels of the memory hierarchy (e.g. LLC and DRAM). We propose to fully evaluate these extensions on open-source software and hardware and measure their effectiveness with realistic case studies.


Waqar Ali

Deterministic Scheduling of Real-Time Tasks on Heterogeneous Multicore Platforms

When & Where:


https://zoom.us/j/484640842?pwd=TDAyekxtRDVaTHF0K1NlbU5wNFVtUT09 - The password for the meeting is 005158.

Committee Members:

Heechul Yun, Chair
Esam Eldin Mohamed Aly
Drew Davidson
Prasad Kulkarni
Shawn Keshmiri

Abstract

Scheduling of real-time tasks involves analytically determining whether each task in a group of periodic tasks can finish before its deadline. This problem is well understood for unicore platforms and there are exact schedulability tests which can be used for this purpose. However, in multicore platforms, sharing of hardware resources between simultaneously executing real-time tasks creates non-deterministic coupling between them based on their requirement of the shared hardware resource(s) which significantly complicates the schedulability analysis. The standard practice is to over-estimate the worst-case execution time (WCET) of the real-time tasks, by a constant factor (e.g, 2x), when determining schedulability on these platforms. Although widely used, this practice has two serious flaws. Firstly, it can make the schedulability analysis overly pessimistic because all tasks do not interfere with each other equally. Secondly, recent findings have shown that for tasks that do get affected by shared resource interference, they can experience extreme (e.g., >300X) WCET increases on commercial-of-the-shelf (COTS) multicore platforms, in which case, a schedulability analysis incorporating a blanket interference factor of 2x for every task cannot give accurate results. Apart from the problem of WCET estimation, the established schedulability analyses for multicore platforms are inherently pessimistic due to the effect of carry-in jobs from high priority tasks. Finally, the increasing integration of hardware accelerators (e.g., GPU) on SoCs complicates the problem further because of the nuances of scheduling on these devices which is different from traditional CPU scheduling.

 

We propose a novel approach towards scheduling of real-time tasks on heterogeneous multicore platforms with the aim of increased determinism and utilization in the online execution of real-time tasks and decreased pessimism in the offline schedulability analysis. Under this framework, we propose to statically group different real-time tasks into a single scheduling entity called a virtual-gang. Once formed, these virtual-gangs are to be executed one-at-a-time with strict regulation on interference from other sources with the help of state-of-the-art techniques for performance isolation in multicore platforms. Using this idea, we can achieve three goals. Firstly, we can limit the effect of shared resource interference which can exist only between tasks that are part of the same virtual-gang. Secondly, due to one-gang-at-a-time policy, we can transform the complex problem of scheduling real-time tasks on multicore platforms into simple and well-understood problem of scheduling these tasks on unicore platforms. Thirdly, we can demonstrate that it is easy to incorporate scheduling on integrated GPUs into our framework while preserving the determinism of the overall system. We show that the virtual-gang formation problem can be modeled as an optimization problem and present algorithms for solving it with different trade-offs. We propose to fully implement this framework in the open-source Linux kernel and evaluate it both analytically using generated tasksets and empirically with realistic case-studies.


Amir Modarresi

Network Resilience Architecture and Analysis for Smart Homes

When & Where:


https://kansas.zoom.us/j/228154773

Committee Members:

Victor Frost, Chair
Morteza Hashemi
Fengjun Li
Bo Luo
John Symons

Abstract

The Internet of Things (IoT) is evolving rapidly to every aspect of human life including, healthcare, homes, cities, and driverless vehicles that makes humans more dependent on the Internet and related infrastructure. While many researchers have studied the structure of the Internet that is resilient as a whole, new studies are required to investigate the resilience of the edge networks in which people and \things" connect to the Internet. Since the range of service requirements varies at the edge of the network, a wide variety of technologies with different topologies are involved. Though the heterogeneity of the technologies at the edge networks can improve the robustness through the diversity of mechanisms, other issues such as connectivity among the utilized technologies and cascade of failures would not have the same effect as a simple  network. Therefore, regardless of the size of networks at the edge, the structure of these networks is complicated and requires appropriate study.

In this dissertation, we propose an abstract model for smart homes, as part of one of the fast-growing networks at the edge, to illustrate the heterogeneity and complexity of the network structure. As the next step, we make two instances of the abstract smart home model and perform a graph-theoretic analysis to recognize the fundamental behavior of the network to improve its robustness. During the process, we introduce a formal multilayer graph model to highlight the structures, topologies, and connectivity of various technologies at the edge networks and their connections to the Internet core. Furthermore,  we propose another graph model, technology interdependence graph, to represent the connectivity of technologies. This representation shows the degree of connectivity among technologies and illustrates which technologies are more vulnerable to link and node failures.

Moreover, the dominant topologies at the edge change the node and link vulnerability, which can be used to apply worst-case scenario attacks. Restructuring of the network by adding new links associated with various protocols to maximize the robustness of a given network can have distinctive outcomes for different robustness metrics. However, typical centrality metrics usually fail to identify important nodes in multi-technology networks such as smart homes. We propose four new centrality metrics to improve the process of identifying important nodes in multi-technology networks and recognize vulnerable nodes. Finally, we study over 1000 different smart home  topologies to examine the resilience of the networks with typical and the proposed centrality metrics.


Qiaozhi Wang

Towards the Understanding of Private Content -- Content-based Privacy Assessment and Protection in Social Networks

When & Where:


246 Nichols Hall

Committee Members:

Bo Luo, Chair
Fengjun Li
Guanghui Wang
Heechul Yun
Prajna Dhar

Abstract

In the wake of the Facebook data breach scandal, users begin to realize how vulnerable their per-sonal data is and how blindly they trust the online social networks (OSNs) by giving them an inordinate amount of private data that touch on unlimited areas of their lives. In particular, stud-ies show that users sometimes reveal too much information or unintentionally release regretful messages, especially when they are careless, emotional, or unaware of privacy risks. Additionally, friends on social media platforms are also found to be adversarial and may leak one’s private in-formation. Threats from within users’ friend networks – insider threats by human or bots – may be more concerning because they are much less likely to be mitigated through existing solutions, e.g., the use of privacy settings. Therefore, we argue that the key component of privacy protection in social networks is protecting sensitive/private content, i.e. privacy as having the ability to control dissemination of information. A mechanism to automatically identify potentially sensitive/private posts and alert users before they are posted is urgently needed.

In this dissertation, we propose a context-aware, text-based quantitative model for private information assessment, namely PrivScore, which is expected to serve as the foundation of a privacy leakage alerting mechanism. We first solicit diverse opinions on the sensitiveness of private information from crowdsourcing workers, and examine the responses to discover a perceptual model behind the consensuses and disagreements. We then develop a computational scheme using deep neural networks to compute a context-free PrivScore (i.e., the “consensus” privacy score among average users). Finally, we integrate tweet histories, topic preferences and social contexts to generate a per-sonalized context-aware PrivScore. This privacy scoring mechanism could be employed to identify potentially-private messages and alert users to think again before posting them to OSNs. Such a mechanism could also benefit non-human users such as social media chatbots.​


Mohammad Saad Adnan

Corvus: Integrating Blockchain with Internet of Things Towards a Privacy Preserving, Collaborative and Accountable, Surveillance System in a Smart Community

When & Where:


246 Nichols Hall

Committee Members:

Bo Luo, Chair
Alex Bardas
Fengjun Li


Abstract

The Internet of Things is a rapidly growing field that offers improved data collection, analysis and automation as solutions for everyday problems. A smart-city is one major example where these solutions can be applied to issues with urbanization. And while these solutions can help improve the quality of life of the citizens, there are always security & privacy risks. Data collected in a smart-city can infringe upon the privacy of users and reveal potentially harmful information. One example is a surveillance system in a smart city. Research shows that people are less likely to commit crimes if they are being watched. Video footage can also be used by law enforcement to track and stop criminals. But it can also be harmful if accessible to untrusted users. A malicious user who can gain access to a surveillance system can potentially use that information to harm others. There are researched methods that can be used to encrypt the video feed, but then it is only accessible to the system owner. Polls show that public opinion of surveillance systems is declining even if they provide increased security because of the lack of transparency in the system. Therefore, it is vital for the system to be able to do its intended purpose while also preserving privacy and holding malicious users accountable.  

To help resolve these issues with privacy & accountability and to allow for collaboration, we propose Corvus, an IoT surveillance system that targets smart communities. Corvus is a collaborative blockchain based surveillance system that uses context-based image captioning to anonymously describe events & people detected. These anonymous captions are stored on the immutable blockchain and are accessible by other users. If they find the description from another camera relevant to their own, they can request the raw video footage if necessary. This system supports collaboration between cameras from different networks, such as between two neighbors with their own private camera networks.  This paper will explore the design of this system and how it can be used as a privacy-preserving, but translucent & accountable approach to smart-city surveillance. Our contributions include exploring a novel approach to anonymizing detected events and designing the surveillance system to be privacy-preserving and collaborative.


Sandip Dey

Analysis of Performance Overheads in DynamoRIO Binary Translator

When & Where:


2001 B Eaton Hall

Committee Members:

Prasad Kulkarni, Chair
Jerzy Grzymala-Busse
Esam Eldin Mohamed Aly


Abstract

Dynamic binary translation is the process of translating instruction code from one architecture to another while it executes, i.e., dynamically. As modern applications are becoming larger, more complex and more dynamic, the tools to manipulate these programs are also becoming increasingly complex. DynamoRIO is one such dynamic binary translation tool that targets the most common IA-32 (a.k.a. x86) architecture on the most popular operating systems - Windows and Linux. DynamoRIO includes applications ranging from program analysis and understanding to profiling, instrumentation, optimization, improving software security, and more. However, even considering all of these optimization techniques, DynamoRIO still has the limitations of performance and memory usage, which restrict deployment scalability. The goal of my thesis is to break down the various aspects which contribute to the overhead burden and evaluate which factors directly contribute to this overhead. This thesis will discuss all of these factors in further detail. If the process can be streamlined, this application will become more viable for widespread adoption in a variety of areas. We have used industry standard Mi benchmarks in order to evaluate in detail the amount and distribution of the overhead in DynamoRIO. Our statistics from the experiments show that DynamoRIO executes a large number of additional instructions when compared to the native execution of the application. Furthermore, these additional instructions are involved in building the basic blocks, linking, trace creation, and resolution of indirect branches, all of which in return contribute to the frequent exiting of the code cache. We will discuss in detail all of these overheads, show statistics of instructions for each overhead, and finally show the observations and analysis in this defense.


Eric Schweisberger

Optical Limiting via Plasmonic Parametric Absorbers

When & Where:


2001 B Eaton Hall

Committee Members:

Alessandro Salandrino , Chair
Kenneth Demarest
Rongqing Hui


Abstract

Optical sensors are increasingly prevalent devices whose costs tend to increase with their sensitivity. A hike in sensitivity is typically associated with fragility, rendering expensive devices vulnerable to threats of high intensity illumination. These potential costs and even security risks have generated interest in devices that maintain linear transparency under tolerable levels of illumination, but can quickly convert to opaque when a threshold is exceeded. Such a device is deemed an optical limiter. Copious amounts of research have been performed over the last few decades on optical nonlinearities and their efficacy in limiting. This work provides an overview of the existing literature and evaluates the applicability of known limiting materials to threats that vary in both temporal and spectral width. Additionally, we introduce the concept of plasmonic parametric resonance (PPR) and its potential for devising a new limiting material, the plasmonic parametric absorber (PPA). We show that this novel material exhibits a reverse saturable absorption behavior and promises to be an effective tool in the kit of optical limiter design.


Muhammad Saad Adnan

Corvus: Integrating Blockchain with Internet of Things Towards a Privacy Preserving, Collaborative and Accountable, Surveillance System in a Smart Community

When & Where:


246 Nichols Hall

Committee Members:

Bo Luo, Chair
Alex Bardas
Fengjun Li


Abstract

The Internet of Things is been a rapidly growing field that offers improved data collection, analysis and automation as solutions for everyday problems. A smart-city is one major example where these solutions can be applied to issues with urbanization. And while these solutions can help improve the quality of live of the citizens, there are always security & privacy risks. Data collected in a smart-city can infringe upon the privacy of users and reveal potentially harmful information. One example is a surveillance system in a smart city. Research shows that people are less likely to commit crimes if they are being watched. Video footage can also be used by law enforcement to track and stop criminals. But it can also be harmful if accessible to untrusted users. A malicious user who can gain access to a surveillance system can potentially use that information to harm others. There are researched methods that can be used to encrypt the video feed, but then it is only accessible to the system owner. Polls show that public opinion of surveillance systems is declining even if they provide increased security because of the lack of transparency in the system. Therefore, it is vital for the system to be able to do its intended purpose while also preserving privacy and holding malicious users accountable. 

To help resolve these issues with privacy & accountability and to allow for collaboration, we propose Corvus, an IoT surveillance system that targets smart communities. Corvus is a collaborative blockchain based surveillance system that uses context-based image captioning to anonymously describe events & people detected. These anonymous captions are stored on the immutable blockchain and are accessible by other users. If they find the description from another camera relevant to their own, they can request the raw video footage if necessary. This system supports collaboration between cameras from different networks, such as between two neighbors with their own private camera networks. This paper will explore the design of this system and how it can be used as a privacy-preserving, but translucent & accountable approach to smart-city surveillance. Our contributions include exploring a novel approach to anonymizing detected events and designing the surveillance system to be privacy-preserving and collaborative.