Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Mahmudul Hasan

Assertion-Based Security Assessment of Hardware IP Protection Methods

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

Combinational and sequential locking methods are promising solutions for protecting hardware intellectual property (IP) from piracy, reverse engineering, and malicious modifications by locking the functionality of the IP based on a secret key. To improve their security, researchers are developing attack methods to extract the secret key.  

While the attacks on combinational locking are mostly inapplicable for sequential designs without access to the scan chain, the limited applicable attacks are generally evaluated against the basic random insertion of key gates. On the other hand, attacks on sequential locking techniques suffer from scalability issues and evaluation of improperly locked designs. Finally, while most attacks provide an approximately correct key, they do not indicate which specific key bits are undetermined. This thesis proposes an oracle-guided attack that applies to both combinational and sequential locking without scan chain access. The attack applies light-weight design modifications that represent the oracle using a finite state machine and applies an assertion-based query of the unlocking key. We have analyzed the effectiveness of our attack against 46 sequential designs locked with various classes of combinational locking including random, strong, logic cone-based, and anti-SAT based. We further evaluated against a sequential locking technique using 46 designs with various key sequence lengths and widths. Finally, we expand our framework to identify undetermined key bits, enabling complementary attacks on the smaller remaining key space.


Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


RokunuzJahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior  by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.

This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.


Tanvir Hossain

Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based Platform

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.


Hara Madhav Talasila

Radiometric Calibration of Radar Depth Sounder Data Products

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Carl Leuschen, Chair
Patrick McCormick
James Stiles
Jilu Li
Leigh Stearns

Abstract

Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.

As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.


Past Defense Notices

Dates

Anna Fritz

Type Dependent Policy Language

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Perry Alexander, Chair
Alex Bardas
Andy Gill


Abstract

Remote attestation is the act of making trust decisions about a communicating party. During this process, an appraiser asks a target to execute an attestation protocol that generates and returns evidence. The appraiser can then make claims about the target by evaluating the evidence. Copland is a formally specified, executable language for representing attestation protocols. We introduce Copland centered negotiation as prerequisite to attestation to find a protocol that meets the target’s needs for constrained disclosure and the appraiser’s desire for comprehensive information. Negotiation begins when the appraiser sends a request, a Copland phrase, to the target. The target gathers all protocols that satisfy the request and then, using their privacy policy, can filter out the phrases that expose sensitive information. The target sends these phrases to the appraiser as a proposal. The appraiser then chooses the best phrase for attestation, based on situational requirements embodied in a selection function. Our focus is statically ensuring the target does not share sensitive information though terms in the proposal, meeting their need for constrained disclosure. To accomplish this, we realize two independent implementation of the privacy and selection policies using indexed types and subset types. In using indexed types, the policy check is accomplishes by indexing the term grammar with the type of evidence the term produces. The statically ensures that terms written in the language will satisfy the privacy policy criteria. In using the subset type, we statically limit the collection of terms to those that satisfy the privacy policy. This type abides by the rules of set comprehension to build a set such that all elements of the set satisfy the privacy policy. Combining our ideas for a dependently typed privacy policy and negotiation, we give the target the chance to suggest a term or terms for attestation that fits the appraiser’s needs while not disclosing sensitive information.


Sahithi Reddy Paspuleti

Real-Time Mask Recognition

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Prasad Kulkarni, Chair
David Johnson, Co-Chair
Andrew Gill


Abstract

COVID-19 is a disease that spreads from human to human which can be controlled by ensuring proper use of a facial mask. The spread of COVID-19 can be limited if people strictly maintain social distancing and use a facial mask. Very sadly, people are not obeying these rules properly which is speeding the spread of this virus. Detecting the people not obeying the rules and informing the corresponding authorities can be a solution in reducing the spread of Corona virus. The proposed method detects the face from the image correctly and then identifies if it has a mask on it or not. As a surveillance task performer, it can also detect a face along with a mask in motion. It has numerous applications, such as autonomous driving, education, surveillance, and so on.


Mugdha Bajjuri

Driver Drowsiness Monitoring System

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Prasad Kulkarni, Chair
David Johnson, Co-Chair
Andrew Gill


Abstract

Fatigue and microsleep at the wheel are often the cause of serious accidents and death. Fatigue, in general, is difficult to measure or observe unlike alcohol and drugs, which have clear key indicators and tests that are available easily. Hence, detection of driver’s fatigue and its indication is an active research area. Also, I believe that drowsiness can negatively impact people in working and classroom environments as well. Drowsiness in the workplace especially while working with heavy machinery may result in serious injuries similar to those that occur while driving drowsily. The proposed system for detecting driver drowsiness has a webcam that records the video of the driver and driver’s face is detected in each frame employing image processing techniques. Facial landmarks on the detected face are pointed and subsequently the eye aspect ratio, mouth opening ratio and nose length ratio are computed and depending on their values, drowsiness is detected. If drowsiness is detected, a warning or alarm is sent to the driver from the warning system.


Kamala Gajurel

A Fine-Grained Visual Attention Approach for Fingerspelling Recognition in the Wild

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Cuncong Zhong, Chair
Guanghui Wang
Taejoon Kim
Fengjun Li

Abstract

Fingerspelling in sign language has been the means of communicating technical terms and proper nouns when they do not have dedicated sign language gestures. The automatic recognition of fingerspelling can help resolve communication barriers when interacting with deaf people. The main challenges prevalent in automatic recognition tasks are the ambiguity in the gestures and strong articulation of the hands. The automatic recognition model should address high inter-class visual similarity and high intra-class variation in the gestures. Most of the existing research in fingerspelling recognition has focused on the dataset collected in a controlled environment. The recent collection of a large-scale annotated fingerspelling dataset in the wild, from social media and online platforms, captures the challenges in a real-world scenario. This study focuses on implementing a fine-grained visual attention approach using Transformer models to address the challenges existing in two fingerspelling recognition tasks: multiclass classification of static gestures and sequence-to-sequence prediction of continuous gestures. For a dataset with a single gesture in a controlled environment (multiclass classification), the Transformer decoder employs the textual description of gestures along with image features to achieve fine-grained attention. For the sequence-to-sequence prediction task in the wild dataset, fine-grained attention is attained by utilizing the change in motion of the video frames (optical flow) in sequential context-based attention along with a Transformer encoder model. The unsegmented continuous video dataset is jointly trained by balancing the Connectionist Temporal Classification (CTC) loss and maximum-entropy loss. The proposed methodologies outperform state-of-the-art performance in both datasets. In comparison to the previous work for static gestures in fingerspelling recognition, the proposed approach employs multimodal fine-grained visual categorization. The state-of-the-art model in sequence-to-sequence prediction employs an iterative zooming mechanism for fine-grained attention whereas the proposed method is able to capture better fine-grained attention in a single iteration.


Chuan Sun

Reconfigurability in Wireless Networks: Applications of Machine Learning for User Localization and Intelligent Environment

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link.

Committee Members:

Morteza Hashemi, Chair
David Johnson
Taejoon Kim


Abstract

With the rapid development of machine learning (ML) and deep learning (DL) methodologies, DL methods can be leveraged for wireless network reconfigurability and channel modeling. While deep learning-based methods have been applied in a few wireless network use cases, there is still much to be explored. In this project, we focus on the application of deep learning methods for two scenarios. In the first scenario, a user transmitter was moving randomly within a campus area, and at certain spots sending wireless signals that were received by multiple antennas. We construct an active deep learning architecture to predict user locations from received signals after dimensionality reduction, and analyze 4 traditional query strategies for active learning to improve the efficiency of utilizing labeled data. We propose a new location-based query strategy that considers both spatial density and model uncertainty when selecting samples to label. We show that the proposed query strategy outperforms all the existing strategies. In the second scenario, a reconfigurable intelligent surface (RIS) containing 4096 tunable cells reflects signals from a transmitter to users in an office for better performance. We use the training data of one user's received signals under different RIS configurations to learn the impact behavior of the RIS on the wireless channel. Based on the context and experience from the first scenario, we build a DL neural network that maps RIS configurations to received signal estimations. In the second phase, the loss function was customized towards our final evaluation formula to obtain the optimum configuration array for a user. We propose and build a customized DL pipeline that automatically learns the behavior of RIS on received signals, and generates the optimal RIS configuration array for each of the 50 test users.


Kailani Jones

Deploying Android Security Updates: an Extensive Study Involving Manufacturers, Carriers, and End Users

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Alex Bardas, Chair
Fengjun Li
Bo Luo


Abstract

Android's fragmented ecosystem makes the delivery of security updates and OS upgrades cumbersome and complex. While Google initiated various projects such as Android One, Project Treble, and Project Mainline to address this problem, and other involved entities (e.g., chipset vendors, manufacturers, carriers) continuously strive to improve their processes, it is still unclear how effective these efforts are on the delivery of updates to supported end-user devices. In this paper, we perform an extensive quantitative study (August 2015 to December 2019) to measure the Android security updates and OS upgrades rollout process. Our study leverages multiple data sources: the Android Open Source Project (AOSP), device manufacturers, and the top four U.S. carriers (AT\&T, Verizon, T-Mobile, and Sprint). Furthermore, we analyze an end-user dataset captured in 2019 (152M anonymized HTTP requests associated with 9.1M unique user identifiers) from a U.S.-based social network. Our findings include unique measurements that, due to the fragmented and inconsistent ecosystem, were previously challenging to perform. For example, manufacturers and carriers introduce a median latency of 24 days before rolling out security updates, with an additional median delay of 11 days before end devices update. We show that these values alter per carrier-manufacturer relationship, yet do not alter greatly based on a model's age. Our results also delve into the effectiveness of current Android projects. For instance, security updates for Treble devices are available on average 7 days faster than for non-Treble devices. While this constitutes an improvement, the security update delay for Treble devices still averages 19 days.

 


Ali Alshawish

A New Fault-Tolerant Topology and Operation Scheme for the High Voltage Stage in a Three-Phase Solid-State Transformer

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Prasad Kulkarni, Chair
Morteza Hashemi
Taejoon Kim
Alessandro Salandrino
Elaina Sutley

Abstract

Solid-state transformers (SSTs) are comprised of several cascaded power stages with different voltage levels. This leads to more challenges for operation and maintenance of the SSTs not only under critical conditions, but also during normal operation. However, one of the most important reliability concerns for the SSTs is related to high voltage side switch and grid faults. High voltage stress on the switches, together with the fact that most modern SST topologies incorporate large number of power switches in the high voltage side, contribute to a higher probability of a switch fault occurrence. The power electronic switches in the high voltage stage are under very high voltage stress, significantly higher than other SST stages. Therefore, the probability of the switch failures becomes more substantial in this stage. In this research, a new technique is proposed to improve the overall reliability of the SSTs by enhancing the reliability of the high voltage stage.

 

The proposed method restores the normal operation of the SST from the point of view of the load even though the input stage voltages are unbalanced due to the switch faults. On the other hand, high voltage grid faults that result in unbalanced operating conditions in the SST can also lead to dire consequences in regards to safety and reliability. The proposed method can also revamp the faulty operation to the pre-fault conditions in the case of grid faults. The proposed method integrates the quasi-z-source inverter topology into the SST topology for rebalancing the transformer voltages. Therefore, this work develops a new SST topology in conjunction with a fault-tolerant operation strategy that can fully restore operation of the proposed SST in the case of the two fault scenarios. The proposed fault-tolerant operation strategy rebalances the line-to-line voltages after a fault occurrence by modifying the phase angles between the phase voltages generated by the high voltage stage of the proposed SST. The boosting property of the quasi-z-source inverter topology circuitry is then used to increase the amplitude of the rebalanced line-to-line voltages to their pre-fault values. A modified modulation technique is proposed for modifying the phase angles and controlling the quasi-z-source inverter topology shoot-through duty ratio.


Usman Sajid

Effective uni-modal to multi-modal crowd estimation

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Taejoon Kim, Chair
Bo Luo
Fengjun Li
Cuncong Zhong
Guanghui Wang

Abstract

Crowd estimation is an integral part of crowd analysis. It plays an important role in event management of huge gatherings like Hajj, sporting, and musical events or political rallies. Automated crowd count can lead to better and effective management of such events and prevent any unwanted incident. Crowd estimation is an active research problem due to different challenges pertaining to large perspective, huge variance in scale and image resolution, severe occlusions and dense crowd-like cluttered background regions. Current approaches cannot handle huge crowd diversity well and thus perform poorly in cases ranging from extreme low to high crowd-density, thus, leading to crowd underestimation or overestimation. Also, manual crowd counting subjects to very slow and inaccurate results due to the complex issues as mentioned above. To address the major issues and challenges in the crowd counting domain, we separately investigate two different types of input data: uni-modal (Image) and multi-modal (Image and Audio).

 

In the uni-modal setting, we propose and analyze four novel end-to-end crowd counting networks, ranging from multi-scale fusion-based models to uniscale one-pass and two-pass multi-task models. The multi-scale networks also employ the attention mechanism to enhance the model efficacy. On the other hand, the uni-scale models are equipped with novel and simple-yet-effective patch re-scaling module (PRM) that functions identical but lightweight in comparison to the multi-scale approaches. Experimental evaluation demonstrates that the proposed networks outperform the state-of-the-art methods in majority cases on four different benchmark datasets with up to 12.6% improvement in terms of the RMSE evaluation metric. Better cross-dataset performance also validates the better generalization ability of our schemes. For the multimodal input, the effective feature-extraction (FE) and strong information fusion between two modalities remain a big challenge. Thus, the aim in the multimodal environment is to investigate different fusion techniques with improved FE mechanism for better crowd estimation. The multi-scale uni-modal attention networks are also proven to be more effective in other deep leaning domains, as applied successfully on seven different scene-text recognition datasets with better performance.


Sana Awan

Privacy-preserving Federated Learning

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Fengjun Li, Chair
Alex Bardas
Bo Luo
Cuncong Zhong
Mei Liu

Abstract

Machine learning (ML) is transforming a wide range of applications, promising to bring immense economic and social benefits. However, it also raises substantial security and privacy challenges.  In this dissertation we describe a framework for efficient, collaborative and secure ML training using a federation of client devices that jointly train a ML model using their private datasets in a process called Federated Learning (FL). First, we present the design of a blockchain-enabled Privacy-preserving Federated Transfer Learning (PPFTL) framework for resource-constrained IoT applications. PPFTL addresses the privacy challenges of FL and improves efficiency and effectiveness through model personalization. The framework overcomes the computational limitation of on-device training and the communication cost of transmitting high-dimensional data or feature vectors to a server for training. Instead, the resource-constrained devices jointly learn a global model by sharing their local model updates. To prevent information leakage about the privately-held data from the shared model parameters, the individual client updates are homomorphically encrypted and aggregated in a privacy-preserving manner so that the server only learns the aggregated update to refine the global model. The blockchain provides provenance of the model updates during the training process, makes contribution-based incentive mechanisms deployable, and supports traceability, accountability and verification of the transactions so that malformed or malicious updates can be identified and traced to the offending source. The framework implements model personalization approaches (e.g. fine-tuning) to adapt the global model more closely to the individual client's data distribution.

In the second part of the dissertation, we turn our attention to the limitations of existing FL algorithms in the presence of adversarial clients who may carry out poisoning attacks against the FL model. We propose a privacy-preserving defense, named CONTRA, to mitigate data poisoning attacks and provide a guaranteed level of accuracy under attack.  The defense strategy identifies malicious participants based on the cosine similarity of their encrypted gradient contributions and removes them from FL training. We report the effectiveness of the proposed scheme for IID and non-IID data distributions. To protect data privacy, the clients' updates are combined using secure multi-party computation (MPC)-based aggregation so that the server only learns the aggregated model update without violating the privacy of users' contributions.


Dustin Hauptman

Communication Solutions for Scaling Number of Collaborative Agents in Swarm of Unmanned Aerial Systems Using Frequency Based Hierarchy

When & Where:


Zoom Meeting, please contact jgrisafe@ku.edu for link

Committee Members:

Prasad Kulkarni, Chair
Shawn Keshmiri, (Co-Chair)
Alex Bardas
Morteza Hashemi

Abstract

Swarms of unmanned aerial systems (UASs) usage is becoming more prevalent in the world. Many private companies and government agencies are actively developing analytical and technological solutions for multi-agent cooperative swarm of UASs.  However, majority of existing research focuses on developing guidance, navigation, and control (GNC) algorithms for swarm of UASs and proof of stability and robustness of those algorithms. In addition to profound challenges in control of swarm of UASs, a reliable and fast intercommunication between UASs is one of the vital conditions for success of any swarm.  Many modern UASs have high inertia and fly at high speeds which means if latency or throughput are too low in swarms, there is a higher risk for catastrophic failure due to intercollision within the swarm. This work presents solutions for scaling number of collaborative agents in swarm of UASs using frequency-based hierarchy. This work identifies shortcomings and discusses traditional swarm communication systems and how they rely on a single frequency that will handle distribution of information to all or some parts of a swarm. These systems typically use an ad-hoc network to transfer data locally, on the single frequency, between agents without the need of existing communication infrastructure. While this does allow agents the flexibility of movement without concern for disconnecting from the network and managing only neighboring communications, it doesn’t necessarily scale to larger swarms. In those large swarms, for example, information from the outer agents will be routed to the inner agents. This will cause inner agents, critical to the stability of a swarm, to spend more time routing information than transmitting their state information. This will lead to instability as the inner agents’ states are not known to the rest of the swarm. Even if an ad-hoc network is not used (e.g. an Everyone-to-Everyone network), the frequency itself has an upper limit to the amount of data that it can send reliably before bandwidth constraints or general  interference causes information to arrive too late or not at all.

We propose that by using two frequencies and creating a hierarchy where each layer is a separate frequency, we can group large swarms into manageable local swarms. The intra-swarm communication (inside the local swarm) will be handled on a separate frequency while the inter-swarm communication will have its own. A normal mesh network was tested in both hardware in the loop (HitL) scenarios and a collision avoidance flight test scenario. Those results were compared against dual-frequency HitL simulations. The dual-frequency simulations showed overall improvement in the latency and throughput comparatively to both the simulated and flight-tested mesh network.