Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Abhishek Doodgaon

Photorealistic Synthetic Data Generation for Deep Learning-based Structural Health Monitoring of Concrete Dams

When & Where:


LEEP2, Room 1415A

Committee Members:

Zijun Yao, Chair
Caroline Bennett
Prasad Kulkarni
Remy Lequesne

Abstract

Regular inspections are crucial for identifying and assessing damage in concrete dams, including a wide range of damage states. Manual inspections of dams are often constrained by cost, time, safety, and inaccessibility. Automating dam inspections using artificial intelligence has the potential to improve the efficiency and accuracy of data analysis. Computer vision and deep learning models have proven effective in detecting a variety of damage features using images, but their success relies on the availability of high-quality and diverse training data. This is because supervised learning, a common machine-learning approach for classification problems, uses labeled examples, in which each training data point includes features (damage images) and a corresponding label (pixel annotation). Unfortunately, public datasets of annotated images of concrete dam surfaces are scarce and inconsistent in quality, quantity, and representation.

To address this challenge, we present a novel approach that involves synthesizing a realistic environment using a 3D model of a dam. By overlaying this model with synthetically created photorealistic damage textures, we can render images to generate large and realistic datasets with high-fidelity annotations. Our pipeline uses NX and Blender for 3D model generation and assembly, Substance 3D Designer and Substance Automation Toolkit for texture synthesis and automation, and Unreal Engine 5 for creating a realistic environment and rendering images. This generated synthetic data is then used to train deep learning models in the subsequent steps. The proposed approach offers several advantages. First, it allows generation of large quantities of data that are essential for training accurate deep learning models. Second, the texture synthesis ensures generation of high-fidelity ground truths (annotations) that are crucial for making accurate detections. Lastly, the automation capabilities of the software applications used in this process provides flexibility to generate data with varied textures elements, colors, lighting conditions, and image quality overcoming the constraints of time. Thus, the proposed approach can improve the automation of dam inspection by improving the quality and quantity of training data.


Sana Awan

Towards Robust and Privacy-preserving Federated Learning

When & Where:


Zoom Defense, please email jgrisafe@ku.edu for defense link.

Committee Members:

Fengjun Li, Chair
Alex Bardas
Cuncong Zhong
Mei Liu
Haiyang Chao

Abstract

Machine Learning (ML) has revolutionized various fields, from disease prediction to credit risk evaluation, by harnessing abundant data scattered across diverse sources. However, transporting data to a trusted server for centralized ML model training is not only costly but also raises privacy concerns, particularly with legislative standards like HIPAA in place. In response to these challenges, Federated Learning (FL) has emerged as a promising solution. FL involves training a collaborative model across a network of clients, each retaining its own private data. By conducting training locally on the participating clients, this approach eliminates the need to transfer entire training datasets while harnessing their computation capabilities. However, FL introduces unique privacy risks, security concerns, and robustness challenges. Firstly, FL is susceptible to malicious actors who may tamper with local data, manipulate the local training process, or intercept the shared model or gradients to implant backdoors that affect the robustness of the joint model. Secondly, due to the statistical and system heterogeneity within FL, substantial differences exist between the distribution of each local dataset and the global distribution, causing clients’ local objectives to deviate greatly from the global optima, resulting in a drift in local updates. Addressing such vulnerabilities and challenges is crucial before deploying FL systems in critical infrastructures.

In this dissertation, we present a multi-pronged approach to address the privacy, security, and robustness challenges in FL. This involves designing innovative privacy protection mechanisms and robust aggregation schemes to counter attacks during the training process. To address the privacy risk due to model or gradient interception, we present the design of a reliable and accountable blockchain-enabled privacy-preserving federated learning (PPFL) framework which leverages homomorphic encryption to protect individual client updates. The blockchain is adopted to support provenance of model updates during training so that malformed or malicious updates can be identified and traced back to the source. 

We studied the challenges in FL due to heterogeneous data distributions and found that existing FL algorithms often suffer from slow and unstable convergence and are vulnerable to poisoning attacks, particularly in extreme non-independent and identically distributed (non-IID) settings. We propose a robust aggregation scheme, named CONTRA, to mitigate data poisoning attacks and ensure an accuracy guarantee even under attack. This defense strategy identifies malicious clients by evaluating the cosine similarity of their gradient contributions and subsequently removes them from FL training. Finally, we introduce FL-GMM, an algorithm designed to tackle data heterogeneity while prioritizing privacy. It iteratively constructs a personalized classifier for each client while aligning local-global feature representations. By aligning local distributions with global semantic information, FL-GMM minimizes the impact of data diversity. Moreover, FL-GMM enhances security by transmitting derived model parameters via secure multiparty computation, thereby avoiding vulnerabilities to reconstruction attacks observed in other approaches. 


Arin Dutta

Performance Analysis of Distributed Raman Amplification with Dual-Order Forward Pumping

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Rongqing Hui, Chair
Christopher Allen
Morteza Hashemi
Alessandro Salandrino
Hui Zhao

Abstract

As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To sustain higher data rates while maximizing the spectral efficiency of multi-level modulated signals, a higher Optical signal-to-noise ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems. Distributed Raman Amplification (DRA) has been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Additionally, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium-doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span. The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the Kerr-effect-induced non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of the system performance in FW DRA systems at the receiver. As the performance of DRA with backward pumping is well understood with a relatively low impact of RIN transfer, our study is focused on the FW pumping scheme. Our research is intended to provide a comprehensive analysis of the system performance impact of dual-order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both the 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual-order FW Raman configurations is compared with that of single-order Raman pumping to understand the trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual-order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.


Past Defense Notices

Dates

Andrew Mertz

Multiple Input Single Output (MISO) Receive Processing Techniques for Linear Frequency Modulated Continuous Wave Frequency Diverse Array (LFMCW-FDA) Transmit Structures

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Chris Allen
Shannon Blunt
James Stiles

Abstract

This thesis focuses on the multiple processing techniques that can be applied to a single receive element co-located with a Frequency Diverse Array (FDA) transmission structure that illuminates a large volume to estimate the scattering characteristics of objects within the illuminated space in the range, Doppler, and spatial dimensions. FDA transmissions consist of a number of evenly spaced transmitting elements all of which are radiating a linear frequency modulated (LFM) waveform. The elements are configured into a Uniform Linear Array (ULA) and the waveform of each element is separated by a frequency spacing across the elements where the time duration of the chirp is inversely proportional to an integer multiple of the frequency spacing between elements. The complex transmission structure created by this arrangement of multiple transmitting elements can be received and processed by a single receive element. Furthermore, multiple receive processing techniques, each with their own advantages and disadvantages, can be applied to the data received from the single receive element to estimate the range, velocity, and spatial direction of targets in the illuminated volume relative to the co-located transmit array and receive element. Three different receive processing techniques that can be applied to FDA transmissions are explored. Two of these techniques are novel to this thesis, including the spatial matched filter processing technique for FDA transmission structures, and stretch processing using virtual array processing for FDA transmissions. Additionally, this thesis introduces a new type of FDA transmission structure referred to as ”slow-time” FDA.


Sameera Katamaneni

Revolutionizing Forensic Identification: A Dual-Method Facial Recognition Paradigm for Enhanced Criminal Identification

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hongyang Sun



Abstract

In response to the challenges posed by increasingly sophisticated criminal behaviour that strategically evades conventional identification methods, this research advocates for a paradigm shift in forensic practices. Departing from reliance on traditional biometric techniques such as DNA matching, eyewitness accounts, and fingerprint analysis, the study introduces a pioneering biometric approach centered on facial recognition systems. Addressing the limitations of established methods, the proposed methodology integrates two key components. Firstly, facial features are meticulously extracted using the Histogram of Oriented Gradients (HOG) methodology, providing a robust representation of individualized facial characteristics. Subsequently, a face recognition system is implemented, harnessing the power of the K-Nearest Neighbours machine learning classifier. This innovative dual-method approach aims to significantly enhance the accuracy and reliability of criminal identification, particularly in scenarios where conventional methods prove inadequate. By capitalizing on the inherent uniqueness of facial features, this research strives to introduce a formidable tool for forensic practitioners, offering a more effective means of addressing the evolving landscape of criminal tactics and safeguarding the integrity of justice systems. 


Thomas Atkins

Secure and Auditable Academic Collections Storage via Hyperledger Fabric-Based Smart Contracts

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Fengjun Li
Bo Luo


Abstract

This paper introduces a novel approach to manage collections of artifacts through smart contract access control, rooted in on-chain role-based property-level access control. This smart contract facilitates the lifecycle of these artifacts including allowing for the creation,  modification, removal, and historical auditing of the artifacts through both direct and suggested actions. This method introduces a collection object designed to store role privileges concerning state object properties. User roles are defined within an on-chain entity that maps users' signed identities to roles across different collections, enabling a single user to assume varying roles in distinct collections. Unlike existing key-level endorsement mechanisms, this approach offers finer-grained privileges by defining them on a per-property basis, not at the key level. The outcome is a more flexible and fine-grained access control system seamlessly integrated into the smart contract itself, empowering administrators to manage access with precision and adaptability across diverse organizational contexts.  This has the added benefit of allowing for the auditing of not only the history of the artifacts, but also for the permissions granted to the users.  


Christian Jones

Robust and Efficient Structure-Based Radar Receive Processing

When & Where:


Nichols Hall, Room 129 (Apollo Auditorium)

Committee Members:

Shannon Blunt, Chair
Chris Allen
Suzanne Shontz
James Stiles
Zsolt Talata

Abstract

Legacy radar systems largely rely on repeated emission of a linear frequency modulated (LFM) or chirp waveform to ascertain scattering information from an environment. The prevalence of these chirp waveforms largely stems from their simplicity to generate, process, and the general robustness they provide towards hardware effects. However, this traditional design philosophy often lacks the flexibility and dimensionality needed to address the dynamic “complexification” of the modern radio frequency (RF) environment or achieve current operational requirements where unprecedented degrees of sensitivity, maneuverability, and adaptability are necessary.

Over the last couple of decades analog-to-digital and digital-to-analog technologies have advanced exponentially, resulting in tremendous design degrees of freedom and arbitrary waveform generation (AWG) capabilities that enable sophisticated design of emissions to better suit operational requirements. However, radar systems typically require high powered amplifiers (HPA) to contend with the two-way propagation. Thus, transmitter-amenable waveforms are effectively constrained to be both spectrally contained and constant amplitude, resulting in a non-convex NP-hard design problem.

While determining the global optimal waveform can be intractable for even modest time-bandwidth products (TB), locally optimal transmitter-amenable solutions that are “good enough” are often readily available. However, traditional matched filtering may not satisfy operational requirements for these sub-optimal emissions. Using knowledge of the transmitter-receiver chain, a discrete linear model can be formed to express the relationship between observed measurements and the complex scattering of the environment. This structured representation then enables more sophisticated least-square and adaptive estimation techniques to better satisfy operational needs, improve estimate fidelity, and extend dynamic range.

However, radar dimensionality can be enormous and brute force implementations of these techniques may have unwieldy computational burden on even cutting-edge hardware. Additionally, a discrete linear representation is fundamentally an approximation of the dynamic continuous physical reality and model errors may induce bias, create false detections, and limit dynamic range. As such, these structure-based approaches must be both computationally efficient and robust to reality.

Here several generalized discrete radar receive models and structure-based estimation schemes are introduced. Modifications and alternative solutions are then proposed to improve estimate fidelity, reduce computational complexity, and provide further robustness to model uncertainty.


Shawn Robertson

A secure framework for at risk populations in austere environments utilizing Bluetooth Mesh communications

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li
Bo Luo
Huazhen Fang

Abstract

Austere environments are defined by the US Military as those regularly experiencing significant environmental hazards, have limited access to reliable electricity, or require prolonged use of body armor or chemical protection equipment.  We propose that in modern society, this definition can extend also to telecommunications infrastructure, areas where an active adversary controls the telecommunications infrastructure and works against the people such as protest areas in Iran, Russia, and China or areas experiencing conflict and war such as Eastern Ukraine.  People in these austere environments need basic text communications and the ability to share simple media like low resolution pictures.  This communication is complicated by the adversaries’ capabilities as a potential nation-state actor. To address this, Low Earth Orbit satellite clusters, like Starlink, can be used to exfiltrate communications completely independent of local infrastructure.  This, however, creates another issue as these satellite ground terminals are not inherently designed to support many users over a large area.  Traditional means of extending this connectivity create both power and security concerns.  We propose that Bluetooth Mesh can be used to extend connectivity and provide communications. 

Bluetooth Mesh provides a low signal footprint to reduce the risk of detection, blends into existent signals within the 2.4ghz spectrum, has security aspects in the specification, and devices can utilize small batteries maintaining a covert form factor.  To realize this security enhancements must be made to both the provisioning process of the Bluetooth Mesh network and a key management scheme that ensures the regular and secure changing of keys either in response to an adversary’s action or as a prevention of an adversary’s action must be implemented.  We propose a provisioning process using whitelists on both provisioner and device and uses attestation for passwords allowing devices to be provisioned on deployment to protect the at-risk population and prevent BlueMirror attacks.  We also propose, implement, and measure the impact of an automated key exchange that meets the Bluetooth Mesh 3 phase specification.  Our experimentation, in a field environment, shows that Bluetooth Mesh has the throughput, reliability and security to meet the requirements of at-risk populations in austere environments. 


Venkata Mounika Keerthi

Evaluating Dynamic Resource Management for Bulk Synchronous Parallel Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Hongyang Sun, Chair
David Johnson
Prasad Kulkarni


Abstract

Bulk Synchronous Parallel (BSP) applications comprise distributed tasks that synchronize at periodic intervals, known as supersteps. Efficient resource management is critical for the performance of BSP applications, especially when deployed on multi-tenant cloud platforms. This project evaluates and extends some existing resource management algorithms for BSP applications, while focusing on dynamic schedulers to mitigate stragglers under variable workloads. In particular, a Dynamic Window algorithm is implemented to compute resource configurations optimized over a customizable timeframe by considering workload variability. The algorithm applies a discount factor prioritizing improvements in earlier supersteps to account for increasing prediction errors in future supersteps. It represents a more flexible approach compared to the Static Window algorithm that recomputes the resource configuration after a fixed number of supersteps. A comparative evaluation of the Dynamic Window algorithm against existing techniques, including the Static Window algorithm, a Dynamic Model Predictive Control (MPC) algorithm, and a Reinforcement Learning (RL) based algorithm, is performed to quantify potential reductions in application duration resulting from enhanced superstep-level customization. Further evaluations also show the impacts of window size and checkpoint (reconfiguration) cost on these algorithms, gaining insights into their dynamics and performance trade-offs.

Degree: MS Project Defense (CS)


Sohan Chandra

Predicting inorganic nitrogen content in the soil using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Taejoon Kim, Chair
Prasad Kulkarni
Cuncong Zhong


Abstract

This ground-breaking project addresses a critical issue in crop production: precisely determining plant-available inorganic nitrogen (IN) in soil to optimize fertilization strategies. Current methodologies frequently struggle with the complexities of determining a soil's nitrogen content, resorting to approximations and labor-intensive soil testing procedures that can lead to the pitfalls of under or over-fertilization, endangering agricultural productivity. Recognizing the scarcity of historical inorganic nitrogen (IN) data, this solution employs a novel approach that employs Generative Adversarial Networks (GANs) to generate statistically similar inorganic nitrogen (IN) data. 

 

This synthetic data set works in tandem with data from the Decision Support System for Agrotechnology Transfer (DSSAT). To address the data's inherent time-series nature, we use the power of Long Short-Term Memory (LSTM) neural networks in our predictive model. The resulting model is a sophisticated and accurate tool that can provide reliable estimates without extensive soil testing. This not only ensures precision in nutrient management but is also a cost-effective and dependable solution for crop production optimization. 


Thomas Woodruff

Model Predictive Control of Nonlinear Latent Force Models

When & Where:


M2SEC, Room G535

Committee Members:

Jim Stiles, Chair
Michael Branicky
Heechul Yun


Abstract

Model Predictive Control (MPC) has emerged as a potent approach for controlling nonlinear systems in the robotics field and various other engineering domains. Its efficacy lies in its capacity to predictively optimize system behavior while accommodating state and input constraints. Although MPC typically relies on precise dynamic models to be effective, real-world dynamic systems often harbor uncertainties. Ignoring these uncertainties can lead to performance degradation or even failure in MPC.

Nonlinear latent force models, integrating latent uncertainties characterized as Gaussian processes, hold promise for effectively representing nonlinear uncertain systems. Specifically, these models incorporate the state-space representation of a Gaussian process into known nonlinear dynamics, providing the ability to simultaneously predict future states and uncertainties.

This thesis delves into the application of MPC to nonlinear latent force models, aiming to control nonlinear uncertain systems. We formulate a stochastic MPC problem and, to address the ensuing receding-horizon stochastic optimization problem, introduce a scenario-based approach for a deterministic approximation. The resulting scenario-based approach is assessed through simulation studies centered on the motion planning of an autonomous vehicle. The simulations demonstrate the controller's adeptness in managing constraints and consistently mitigating the effects of disturbances. This proposed approach holds promise for various robotics applications and beyond.


Sai Soujanya Ambati

BERT-NEXT: Exploring Contextual Sentence Understanding

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hongyang Sun



Abstract

The advent of advanced natural language processing (NLP) techniques has revolutionized the way we handle textual data. This project presents the implementation of exploring contextual sentence understanding on the Quora Insincere Questions dataset using the pretrained BERT architecture. In this study, we explore the application of BERT, a bidirectional transformer model, for text classification tasks. The goal is to classify if a question contains hateful, disrespectful or toxic content. BERT represents the state-of-the-art in language representation models and has shown strong performance on various natural language processing tasks. In this project, the pretrained BERT base model is fine-tuned on a sample of the Quora dataset for next sentence prediction. Results show that with just 1% of the data (around 13,000 examples), the fine-tuned model achieves over 90% validation accuracy in identifying insincere questions after 4 epochs of training. This demonstrates the effectiveness of leveraging BERT for text classification tasks with minimal labeled data requirements. Being able to automatically detect toxic, hateful or disrespectful content is important to maintain healthy online discussions. However, the nuances of human language make this a challenging natural language processing problem. Insincere questions may contain offensive language, hate speech, or misinformation, making their identification crucial for maintaining a positive and safe online environment. In this project, we explore using the pretrained Bidirectional Encoder Representations from Transformers (BERT) model for next sentence prediction on the task of identifying insincere questions.


Swathi Koyada

Feature balancing of demographic data using SMOTE

When & Where:


Zoom Meeting, please email jgrisafe@ku.edu for defense link.

Committee Members:

Prasad Kulkarni, Chair
Cuncong Zhong



Abstract

The research investigates the utilization of Synthetic Minority Oversampling Techniques (SMOTE) in the context of machine learning models applied to biomedical datasets, particularly focusing on mitigating demographic data disparities. The study is most relevant to underrepresented demographic data. The primary objective is to enhance the SMOTE methodology, traditionally designed for addressing class imbalances, to specifically tackle ethnic imbalances within feature representation. In contrast to conventional approaches that merely exclude race as a fundamental or additive factor without rectifying misrepresentation, this work advocates an innovative modification of the original SMOTE framework, emphasizing dataset augmentation based on participants' demographic backgrounds. The predominant aim of the project is to enhance and reshape the distribution to optimize model performance for unspecified demographic subgroups during training. However, the outcomes indicate that despite the application of feature balancing in this adapted SMOTE method, no statistically significant enhancement in accuracy was discerned. This observation implies that while rectifying imbalances is crucial, it may not independently suffice to overcome challenges associated with heterogeneity in species representation within machine learning models applied to biomedical databases. Consequently, further research endeavors are necessary to identify novel methodologies aimed at enhancing sampling accuracy and fairness within diverse populations.