A Versatile and Programmable UAV Platform for Integrated Terrestrial and Non-Terrestrial Network Measurements in Rural Areas


Student Name: Sherwan Jalal Abdullah
Defense Date:
Location: Eaton Hall, Room 2001B
Chair: Morteza Hashemi

Victor Frost

Shawn Keshmiri

Abstract:

Reliable cellular connectivity is essential for modern services such as telehealth, precision agriculture, and remote education; yet, measuring network performance in rural areas presents significant challenges. Traditional drive testing cannot access large geographic areas between roads, while crowdsourced data provides insufficient spatial resolution in low-population regions. To address these limitations, we develop an open-source UAV-based measurement platform that integrates an onboard computation unit, commercial cellular modem, and automated flight control to systematically capture Radio Access Network (RAN) signals and end-to-end network performance metrics at different altitudes. Our platform collects synchronized measurements of signal strength (RSRP, RSSI), signal quality (RSRQ, SINR), latency, and bidirectional throughput, with each measurement tagged with GPS coordinates and altitude. Experimental results from a semi-rural deployment reveal a fundamental altitude-dependent trade-off: received signal power improves at higher altitudes due to enhanced line-of-sight conditions, while signal quality degrades from increased interference with neighboring cells. Our analysis indicates that most of the measurement area maintains acceptable signal quality, along with adequate throughput performance, for both uplink and downlink communications. We further demonstrate that strong radio signal metrics for individual cells do not necessarily translate to spatial coverage dominance such that the cell serving the majority of our test area exhibited only moderate performance, while cells with superior metrics contributed minimally to overall coverage. Next, we develop several machine learning (ML) models to improve the prediction accuracy of signal strength at unmeasured altitudes. Finally, we extend our measurement platform by integrating non-terrestrial network (NTN) user terminals with the UAV components to investigate the performance of Low-earth Orbit (LEO) satellite networks with UAV mobility. Our measurement results demonstrate that NTN offers a viable fallback option by achieving acceptable latency and throughput performance during flight operations. Overall, this work establishes a reproducible methodology for three-dimensional rural network characterization and provides practical insights for network operators, regulators, and researchers addressing connectivity challenges in underserved areas.

Degree: MS Thesis Defense (EE)
Degree Type: MS Thesis Defense
Degree Field: Electrical Engineering