Task-Oriented Communication and Distributed Control in Smart Grids with Time-Series Forecasting
Alexandru Bardas
Taejoon Kim
Prasad Kulkarni
Zsolt Talata
Smart grids face challenges in maintaining the balance between generation and consumption at the residential and grid scales with the integration of renewable energy resources. Decentralized, dynamic, and distributed control algorithms are necessary for smart grids to function effectively. The inherent variability and uncertainty of renewables, especially wind and solar energy, complicate the deployment of distributed control algorithms in smart grids. In addition, smart grid systems must handle real-time data collected from interconnected devices and sensors while maintaining reliable and secure communication regardless of network failures. To address these challenges, our research models the integration of renewable energy resources into the smart grid and evaluates how predictive analytics can improve distributed control and energy management, while recognizing the limitations of communication channels and networks.
In the first thrust of this research, we develop a model of a smart grid with renewable energy integration and evaluate how forecasting affects distributed control and energy management. In particular, we investigate how contextual weather information and renewable energy time-series forecasting affect smart grid energy management. In addition to modeling the smart grid system and integrating renewable energy resources, we further explore the use of deep learning methods, such as the Long Short-Term Memory (LSTM) and Transformer models, for time-series forecasting. Time-series forecasting techniques are applied within Reinforcement Learning (RL) frameworks to enhance decision-making processes.
In the second thrust, we note that data collection and sharing across the smart grids require considering the impact of network and communication channel limitations in our forecasting models. As renewable energy sources and advanced sensors are integrated into smart grids, communication channels on wireless networks are overflowed with data, requiring a shift from transmitting raw data to processing only useful information to maximize efficiency and reliability. To this end, we develop a task-oriented communication model that integrates data compression and the effects of data packet queuing with considering limitation of communication channels, within a remote time-series forecasting framework. Furthermore, we jointly integrate data compression technique with age of information metric to enhance both relevance and timeliness of data used in time-series forecasting.