SEDPD: Sampling-Enhanced Differentially Private Defense against Backdoor Poisoning Attacks of Image Classification
Drew Davidson
Dongjie Wang
Recent advancements in explainable artificial intelligence (XAI) have brought significant transparency to machine learning by providing interpretable explanations alongside model predictions. However, this transparency has also introduced vulnerabilities, enhancing adversaries’ ability for the model decision processes through explanation-guided attacks. In this paper, we propose a robust, model-agnostic defense framework to mitigate these vulnerabilities by explanations while preserving the utility of XAI. Our framework employs a multinomial sampling approach that perturbs explanation values generated by techniques such as SHAP and LIME. These perturbations ensure differential privacy (DP) bounds, disrupting adversarial attempts to embed malicious triggers while maintaining explanation quality for legitimate users. To validate our defense, we introduce a threat model tailored to image classification tasks. By applying our defense framework, we train models with pixel-sampling strategies that integrate DP guarantees, enhancing robustness against backdoor poisoning attacks with XAI. Extensive experiments on widely used datasets, such as CIFAR-10, MNIST, CIFAR-100 and Imagenette, and models, including ConvMixer and ResNet-50, show that our approach effectively mitigates explanation-guided attacks without compromising the accuracy of the model. We also test our defense performance against other backdoor attacks, which shows our defense framework can detect other type backdoor triggers very well. This work highlights the potential of DP in securing XAI systems and ensures safer deployment of machine learning models in real-world applications.