On the Security of Speech-based Machine Translation Systems: Vulnerabilities and Attacks


Student Name: Junyi Zhao
Defense Date:
Location: Eaton Hall, Room 2001B
Chair: Bo Luo

Fengjun Li

Zijun Yao

Abstract:

In the light of rapid advancement of global connectivity and the increasing reliance on multilingual communication, speech-based Machine Translation (MT) systems have emerged as essential technologies for facilitating seamless cross-lingual interaction. These systems enable individuals and organizations to overcome linguistic boundaries by automatically translating spoken language in real time. However, despite their growing ubiquity in various applications such as virtual assistants, international conferencing, and accessibility services, the security and robustness of speech-based MT systems remain underexplored. In particular, limited attention has been given to understanding their vulnerabilities under adversarial conditions, where malicious actors intentionally craft or manipulate speech inputs to mislead or degrade translation performance.

This thesis presents a comprehensive investigation into the security landscape of speech-based machine translation systems from an adversarial perspective. We systematically categorize and analyze potential attack vectors, evaluate their success rates across diverse system architectures and environmental settings, and explore the practical implications of such attacks. Furthermore, through a series of controlled experiments and human-subject evaluations, we demonstrate that adversarial manipulations can significantly distort translation outputs in realistic use cases, thereby posing tangible risks to communication reliability and user trust.

Our findings reveal critical weaknesses in current MT models and underscore the urgent need for developing more resilient defense strategies. We also discuss open research challenges and propose directions for building secure, trustworthy, and ethically responsible speech translation technologies. Ultimately, this work contributes to a deeper understanding of adversarial robustness in multimodal language systems and provides a foundation for advancing the security of next-generation machine translation frameworks.

Degree: MS Thesis Defense (CS)
Degree Type: MS Thesis Defense
Degree Field: Computer Science