‘Pro-ID: A Secure Face Recognition System using Locality Sensitive Hashing to Protect Human ID’


Student Name: Samyoga Bhattarai
Defense Date:
Location: Eaton Hall, Room 2001B
Chair: Sumaiya Shomaji

Tamzidul Hoque

Hongyang Sun

Abstract:

Face recognition systems are widely used in various applications, from mobile banking apps to personal smartphones. However, these systems often store biometric templates in raw form, posing significant security and privacy risks. Pro-ID addresses this vulnerability by incorporating SimHash, an algorithm of Locality Sensitive Hashing (LSH), to create secure and irreversible hash codes of facial feature vectors. Unlike traditional methods that leave raw data exposed to potential breaches, SimHash transforms the feature space into high-dimensional hash codes, safeguarding user identity while preserving system functionality. 

The proposed system creates a balance between two aspects: security and the system’s performance. Additionally, the system is designed to resist common attacks, including brute force and template inversion, ensuring that even if the hashed templates are exposed, the original biometric data cannot be reconstructed.  

A key challenge addressed in this project is minimizing the trade-off between security and performance. Extensive evaluations demonstrate that the proposed method maintains competitive accuracy rates comparable to traditional face recognition systems while significantly enhancing security metrics such as irreversibility, unlinkability, and revocability. This innovative approach contributes to advancing the reliability and trustworthiness of biometric systems, providing a secure framework for applications in face recognition systems. 

Degree: MS Project Defense (CS)
Degree Type: MS Project Defense
Degree Field: Computer Science