Intellinotes – AI-POWERED DOCUMENT UNDERSTANDING PLATFORM
Prasad Kulkarni
Han Wang
This project presents Intellinotes, an AI-powered platform that transforms educational documents into multiple learning formats to address information-overload challenges in modern education. The system leverages large language models (GPT-4o-mini) to automatically generate four complementary outputs from a single document upload: educational summaries, conversational podcast scripts, hierarchical mind maps, and interactive flashcards.
The platform employs a three-tier architecture built with Next.js, FastAPI, and MongoDB, supporting multiple document formats (PDF, DOCX, PPTX, TXT, images) through a robust parsing pipeline. Comprehensive evaluation on 30 research documents demonstrates exceptional system reliability with a 100% feature success rate across 150 tests (5 features × 30 documents), and strong semantic understanding with a semantic similarity score of 0.72.
While ROUGE scores (ROUGE-1: 0.40, ROUGE-2: 0.09, ROUGE-L: 0.17) indicate moderate lexical overlap typical of abstractive summarization, the high semantic similarity demonstrates that the system effectively captures and conveys the conceptual meaning of source documents—an essential requirement for educational content. This validation of meaning preservation over word matching represents an important contribution to evaluating educational AI systems.
The system processes documents in approximately 65 seconds with perfect reliability, providing students with comprehensive multi-modal learning materials that cater to diverse learning styles. This work contributes to the growing field of AI-assisted education by demonstrating a practical application of large language models for automated educational content generation supported by validated quality metrics.