Fatigue crack segmentation of steel bridges using deep learning models - a comparative study.


Student Name: Rizwan Khan
Defense Date:
Location: Learned Hall, Room 3131
Chair: David Johnson
Co-Chair: Jian Li

Hongyang Sun

Abstract:

Structural health monitoring (SHM) is crucial for maintaining the safety and durability of infrastructure. To address the limitations of traditional inspection methods, this study leverages cutting-edge deep learning-based segmentation models for autonomous crack identification. Specifically, we utilized the recently launched YOLOv11 model, alongside the established DeepLabv3+ model for crack segmentation. Mask R-CNN, a widely recognized model in crack segmentation studies, is used as the baseline approach for comparison. Our approach integrates the CREC cropping strategy to optimize dataset preparation and employs post-processing techniques, such as dilation and erosion, to refine segmentation results. Experimental results demonstrate that our method—combining state-of-the-art models, innovative data preparation strategies, and targeted post-processing—achieves superior mean Intersection-over-Union (mIoU) performance compared to the baseline, showcasing its potential for precise and efficient crack detection in SHM systems

Degree: MS Project Defense (CS)
Degree Type: MS Project Defense
Degree Field: Computer Science