Engineering Laser Beams for Particle Trapping, Lattice Formation and Microscopy
Morteza Hashemi
Rongqing Hui
Alessandro Salandrino
Xinmai Yang
Having control over nano- and micro-sized objects' position inside a suspension is crucial in many applications such as: trapping and manipulating microscopic objects, sorting particles and living microorganisms, and building microscopic size 3D crystal structures and lattices. This control can be achieved by judiciously engineering optical forces and light-matter interactions inside colloidal suspensions that result in optical trapping. However, in the current techniques, to confine and transport particles in 3D, the use of high NA (Numerical Aperture) optics is a must. This in turn leads to several disadvantages such as alignment complications, narrow field of view, low stability values, and undesirable thermal effects. Hence, here we study a novel optical trapping method that we named asymmetric counter-propagating beams where optical forces are engineered to overcome the aforementioned limitations of existing methods. This novel system is significantly easier to align due to its utilization of much lower NA optics in combination with engineered beams which create a very flexible manipulating system. This new approach allows the trapping and manipulation of different shape objects, sizing from tens of nanometers to hundreds of micrometers by exploiting asymmetrical optical fields with high stability. In addition, this technique also allows for significantly larger particle trapping volumes. As a result, we can apply this method to trapping much larger particles and microorganisms that have never been trapped optically before as well as building 3D lattices and crystal structures of microscopic-sized particles. Finally, this novel approach allows for the integration of a variety of spectroscopy and microscopy techniques, such as light-sheet fluorescence microscopy, to extract time-sensitive information and acquire images with detailed features from trapped entities.