Detection and Mitigation of Cross-App Privacy Leakage and Interaction Threats in IoT Automation
Alex Bardas
Drew Davidson
Bo Luo
Haiyang Chao
The rapid growth of Internet of Things (IoT) technology has brought unprecedented convenience to everyday life, enabling users to deploy automation rules and develop IoT apps tailored to their specific needs. However, modern IoT ecosystems consist of numerous devices, applications, and platforms that interact continuously. As a result, users are increasingly exposed to complex and subtle security and privacy risks that are difficult to fully comprehend. Even interactions among seemingly harmless apps can introduce unforeseen security and privacy threats. In addition, violations of memory integrity can undermine the security guarantees on which IoT apps rely.
The first approach investigates hidden cross-app privacy leakage risks in IoT apps. These risks arise from cross-app interaction chains formed among multiple seemingly benign IoT apps. Our analysis reveals that interactions between apps can expose sensitive information such as user identity, location, tracking data, and activity patterns. We quantify these privacy leaks by assigning probability scores to evaluate risk levels based on inferences. In addition, we provide a fine-grained categorization of privacy threats to generate detailed alerts, enabling users to better understand and address specific privacy risks.
The second approach addresses cross-app interaction threats in IoT automation systems by leveraging a logic-based analysis model grounded in event relations. We formalize event relationships, detect event interferences, and classify rule conflicts, then generate risk scores and conflict rankings to enable comprehensive conflict detection and risk assessment. To mitigate the identified interaction threats, an optimization-based approach is employed to reduce risks while preserving system functionality. This approach ensures comprehensive coverage of cross-app interaction threats and provides a robust solution for detecting and resolving rule conflicts in IoT environments.
To support the development and rigorous evaluation of these security analyses, we further developed a large-scale, manually verified, and comprehensive dataset of real-world IoT apps. This clean and diverse benchmark dataset supports the development and validation of IoT security and privacy solutions. All proposed approaches are evaluated using this dataset of real-world apps, collectively offering valuable insights and practical tools for enhancing IoT security and privacy against cross-app threats. Furthermore, we examine the integrity of the execution environment that supports IoT apps. We show that, even under non-privileged execution, carefully crafted memory access patterns can induce bit flips in physical memory, allowing attackers to corrupt data and compromise system integrity without requiring elevated privileges.