Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Arin Dutta

Performance Analysis of Distributed Raman Amplification with Dual-Order Forward Pumping

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Rongqing Hui, Chair
Christopher Allen
Morteza Hashemi
Alessandro Salandrino
Hui Zhao

Abstract

As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To sustain higher data rates while maximizing the spectral efficiency of multi-level modulated signals, a higher Optical signal-to-noise ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems. Distributed Raman Amplification (DRA) has been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Additionally, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium-doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span. The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the Kerr-effect-induced non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of the system performance in FW DRA systems at the receiver. As the performance of DRA with backward pumping is well understood with a relatively low impact of RIN transfer, our study is focused on the FW pumping scheme. Our research is intended to provide a comprehensive analysis of the system performance impact of dual-order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both the 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual-order FW Raman configurations is compared with that of single-order Raman pumping to understand the trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual-order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.


Dang Qua Nguyen

Hybrid Precoding Optimization and Private Federated Learning for Future Wireless Systems

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Taejoon Kim, Chair
Morteza Hashemi
Erik Perrins
Zijun Yao
KC Kong

Abstract

This PhD research addresses two challenges in future wireless systems: hybrid precoder design for sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and private federated learning (FL) over wireless channels. The first part of the research introduces a novel hybrid precoding framework that combines true-time delay (TTD) and phase shifters (PS) precoders to counteract the beam squint effect - a significant challenge in sub-THz massive MIMO systems that leads to considerable loss in array gain. Our research presents a novel joint optimization framework for the TTD and PS precoder design, incorporating realistic time delay constraints for each TTD device. We first derive a lower bound on the achievable rate of the system and show that, in the asymptotic regime, the optimal analog precoder that fully compensates for the beam squint is equivalent to the one that maximizes this lower bound. Unlike previous methods, our framework does not rely on the unbounded time delay assumption and optimizes the TTD and PS values jointly to cope with the practical limitations. Furthermore, we determine the minimum number of TTD devices needed to reach a target array gain using our proposed approach. Simulations validate that the proposed approach demonstrates performance enhancement, ensures array gain, and achieves computational efficiency. In the second part, the research devises a differentially private FL algorithm that employs time-varying noise perturbation and optimizes transmit power to counteract privacy risks, particularly those stemming from engineering-inversion attacks. This method harnesses inherent wireless channel noise to strike a balance between privacy protection and learning utility. By strategically designing noise perturbation and power control, our approach not only safeguards user privacy but also upholds the quality of the learned FL model. Additionally, the number of FL iterations is optimized by minimizing the upper bound on the learning error. We conduct simulations to showcase the effectiveness of our approach in terms of DP guarantee and learning utility.


Sai Narendra Koganti

Real-time Object Detection for Safer Driving Experience in Urban Environment: Leveraging YOLO Algorithm

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Prasad Kulkarni


Abstract

This project offers a hands-on investigation of object identification utilizing the YOLO method, Python, and OpenCV. It begins by explaining the YOLO architecture, focusing on the single-stage detection process for bounding box prediction and class probability calculation. The setup phase includes library installation and model configuration, resulting in a smooth implementation procedure. Using OpenCV, the project includes preparatory processes required for object detection in images. The YOLO model is seamlessly integrated into the OpenCV framework, enabling object detection. Post-processing techniques, such as non-maximum suppression, are used to modify detection results and improve accuracy. Visualizations, such as bounding boxes and labels, are used to help interpret the discovered items. The project finishes by investigating potential expansions and optimizations, such as custom dataset training and deployment on edge devices, opening up new paths for further investigation and development. This project provides developers with the tools and knowledge they need to build effective object detection systems for a wide range of applications, from surveillance and security to autonomous vehicles and augmented reality.


Ruturaj Vaidya

Exploring binary analysis techniques for security

When & Where:


Zoom Defense, please email jgrisafe@ku.edu for defense link.

Committee Members:

Prasad Kulkarni, Chair
Alex Bardas
Drew Davidson
Esam El-Araby
Michael Vitevitch

Abstract

In this dissertation our goal is to evaluate how the loss of information at binary-level affects the performance of existing compiler-level techniques in terms of both efficiency and effectiveness. Binary analysis is difficult, as most of semantic and syntactic information available at source-level gets lost during the compilation process. If the binary is stripped and/ or optimized, then it negatively affects the efficacy of binary analysis frameworks. Moreover, handwritten assembly, obfuscation, excessive indirect calls or jumps, etc. further degrade the accuracy of binary analysis. Challenges to precise binary analysis have implications on the effectiveness, accuracy, and performance, of security and program hardening techniques implemented at the binary level. While these challenges are well-known, their respective impacts on the effectiveness and performance of program hardening techniques are less well-studied.

In this dissertation, we employ classes of defense mechanisms to protect software from the most common software attacks, like buffer overflows and control flow attacks, to determine how this loss of program information at the binary-level affects the effectiveness and performance of defense mechanisms. Additionally, we aim to tackle an important problem of type recovery from binary executables that in turn help bolster the software protection mechanisms.


Wai Ming Chan

A Time-Series Generative Adversarial Network Approach for Improved Soil Inorganic Nitrogen Prediction in Agriculture

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Taejoon Kim, Chair
Zijun Yao
Cuncong Zhong


Abstract

Accurate inference from collected agricultural (AG) data is crucial for optimizing crop production. However, existing methods for soil inorganic nitrogen (IN) level approximation fall short in providing accurate estimations when applied to different production sites. To overcome this challenge, we propose a novel Generative Adversarial Network (GAN) model leveraging a Gated Recurrent Unit (GRU)-based deep learning model, called Agricultural-Predictive GAN (A-PGAN), to predict soil IN from sparse time-series AG data. Our A-PGAN outperforms conventional GAN models, e.g., Wasserstein GAN (WGAN), by augmenting synthesized data sequences to the existing sequences, particularly enhancing generalization performance for out-of-domain data. Additionally, our model demonstrates the flexibility to adapt to varying time intervals and lengths of agronomic features. Simulation results highlight significant improvements in prediction accuracy on both offline simulation data and real AG data. Our proposed model creates new opportunities for the agricultural community to leverage generative deep learning models in synthesizing realistic and out-of-domain data, thereby addressing the challenge of limited AG data and reducing the cost associated with precision agriculture.


Jianpeng Li

BlackLitNetwork: Advancing Black Literature Discovery Through Modern Web Technologies

When & Where:


LEEP2, Room 1420

Committee Members:

Drew Davidson, Chair
Sumaiya Shomaji
Han Wang


Abstract

Advancements in web technologies have significantly expanded access to diverse cultural narratives, yet black literature remains underrepresented in digital domains. The BlackLitNetwork addresses this oversight by harnessing Elasticsearch, MongoDB, React, Python, CSS, HTML, and Node.js, to enhance the discoverability and engagement with black novels. A major component of the platform is a novel generator built with Elasticsearch, which employs powerful full-text search capabilities, essential for users to navigate an extensive literary database effectively.

MongoDB supports the archives platform with a flexible data schema for managing varied literary content efficiently, while Python facilitates robust data cleaning and preprocessing to ensure data integrity and usability. The user interface, created using React, transforms Figma designs from our design team into a dynamic web presence, integrating HTML and CSS to ensure both aesthetic appeal and accessibility.

To further enhance security and manageability, we've implemented a Node.js backend. This layer acts as a middleware, managing and processing requests between our frontend and Elasticsearch. This not only secures our data interactions but also allows for request handling before querying Elasticsearch. This architecture ensures that BlackLitNetwork remains scalable and maintainable.

BlackLitNetwork also features specialized pages for podcasts, briefs, and interactive data visualizations, each designed to highlight historical, and contextual elements of black literature. These components aid in fostering a deeper understanding, establishing BlackLitNetwork as a tool for scholars. This project not only enriches the field of humanities but also promotes a broader understanding of the black literary heritage, making it a resource for researchers, educators, and readers keen on exploring the richness of black literature.


Ethan Grantz

Swarm: A Backend-Agnostic Language for Simple Distributed Programming

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Drew Davidson, Chair
Perry Alexander
Prasad Kulkarni


Abstract

Writing algorithms for a parallel or distributed environment has always been plagued with a variety of challenges, from supervising synchronous reads and writes, to managing job queues and avoiding deadlock. While many languages have libraries or language constructs to mitigate these obstacles, very few attempt to remove those challenges entirely, and even fewer do so while divorcing the means of handling those problems from the means of parallelization or distribution. This project introduces a language called Swarm, which attempts to do just that.

Swarm is a first-class parallel/distributed programming language with modular, swappable parallel drivers. It is intended for everything from multi-threaded local computation on a single machine to large scientific computations split across many nodes in a cluster.

Swarm contains next to no explicit syntax for typical parallel logic, only containing keywords for declaring which variables should reside in shared memory, and describing what code should be parallelized. The remainder of the logic (such as waiting for the results from distributed jobs or locking shared accesses) are added in when compiling to a custom bytecode called Swarm Virtual Instructions (SVI). SVI is then executed by a virtual machine whose parallelization logic is abstracted out, such that the same SVI bytecode can be executed in any parallel/distributed environment.


Johnson Umeike

Optimizing gem5 Simulator Performance: Profiling Insights and Userspace Networking Enhancements

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Mohammad Alian, Chair
Prasad Kulkarni
Heechul Yun


Abstract

Full-system simulation of computer systems is critical for capturing the complex interplay between various hardware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios.

First, we perform a comprehensive profiling study to identify and propose architectural optimizations to accelerate a state-of-the-art architectural simulator. We choose gem5 as the representative architectural simulator, run several simulations with various configurations, perform a detailed architectural analysis of the gem5 source code on different server platforms, tune both system and architectural settings for running simulations, and discuss the future opportunities in accelerating gem5 as an important application. Our detailed profiling of gem5 reveals that its performance is extremely sensitive to the size of the L1 cache. Our experimental results show that a RISC-V core with 32KB data and instruction cache improves gem5’s simulation speed by 31%∼61% compared with a baseline core with 8KB L1 caches. Second, this work extends gem5’s networking capabilities by integrating kernel-bypass/user-space networking based on the DPDK framework, significantly enhancing network throughput and reducing latency. By enabling user-space networking, the simulator achieves a substantial 6.3× improvement in network bandwidth compared to traditional Linux software stacks. Our hardware packet generator model (EtherLoadGen) provides up to a 2.1× speedup in simulation time. Additionally, we develop a suite of networking micro-benchmarks for stress testing the host network stack, allowing for efficient evaluation of gem5’s performance. Through detailed experimental analysis, we characterize the performance differences when running the DPDK network stack on both real systems and gem5, highlighting the sensitivity of DPDK performance to various system and microarchitecture parameters.


Adam Sarhage

Design of Multi-Section Coupled Line Coupler

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Jim Stiles, Chair
Chris Allen
Glenn Prescott


Abstract

Coupled line couplers are used as directional couplers to enable measurement of forward and reverse power in RF transmitters. These measurements provide valuable feedback to the control loops regulating transmitter power output levels. This project seeks to synthesize, simulate, build, and test a broadband, five-stage coupled line coupler with a 20 dB coupling factor. The coupler synthesis is evaluated against ideal coupler components in Keysight ADS.  Fabrication of coupled line couplers is typically accomplished with a stripline topology, but a microstrip topology is additionally evaluated. Measurements from the fabricated coupled line couplers are then compared to the Keysight ADS EM simulations, and some explanations for the differences are provided. Additionally, measurements from a commercially available broadband directional coupler are provided to show what can be accomplished with the right budget.


Mohsen Nayebi Kerdabadi

Contrastive Learning of Temporal Distinctiveness for Survival Analysis in Electronic Health Records

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Zijun Yao, Chair
Fengjun Li
Cuncong Zhong


Abstract

Survival analysis plays a crucial role in many healthcare decisions, where the risk prediction for the events of interest can support an informative outlook for a patient's medical journey. Given the existence of data censoring, an effective way of survival analysis is to enforce the pairwise temporal concordance between censored and observed data, aiming to utilize the time interval before censoring as partially observed time-to-event labels for supervised learning. Although existing studies mostly employed ranking methods to pursue an ordering objective, contrastive methods which learn a discriminative embedding by having data contrast against each other, have not been explored thoroughly for survival analysis. Therefore, we propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework that utilizes survival durations from both censored and observed data to define temporal distinctiveness and construct negative sample pairs with adjustable hardness for contrastive learning. Specifically, we first use an ontological encoder and a sequential self-attention encoder to represent the longitudinal EHR data with rich contexts. Second, we design a temporal contrastive loss to capture varying survival durations in a supervised setting through a hardness-aware negative sampling mechanism. Last, we incorporate the contrastive task into the time-to-event predictive task with multiple loss components. We conduct extensive experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI), a critical and urgent medical condition. The effectiveness and explainability of the proposed model are validated through comprehensive quantitative and qualitative studies.


Jarrett Zeliff

An Analysis of Bluetooth Mesh Security Features in the Context of Secure Communications

When & Where:


Eaton Hall, Room 1

Committee Members:

Alexandru Bardas, Chair
Drew Davidson
Fengjun Li


Abstract

Significant developments in communication methods to help support at-risk populations have increased over the last 10 years. We view at-risk populations as a group of people present in environments where the use of infrastructure or electricity, including telecommunications, is censored and/or dangerous. Security features that accompany these communication mechanisms are essential to protect the confidentiality of its user base and the integrity and availability of the communication network.

In this work, we look at the feasibility of using Bluetooth Mesh as a communication network and analyze the security features that are inherent to the protocol. Through this analysis we determine the strengths and weaknesses of Bluetooth Mesh security features when used as a messaging medium for at risk populations and provide improvements to current shortcomings. Our analysis includes looking at the Bluetooth Mesh Networking Security Fundamentals as described by the Bluetooth Sig: Encryption and Authentication, Separation of Concerns, Area isolation, Key Refresh, Message Obfuscation, Replay Attack Protection, Trashcan Attack Protection, and Secure Device Provisioning.  We look at how each security feature is implemented and determine if these implementations are sufficient in protecting the users from various attack vectors. For example, we examined the Blue Mirror attack, a reflection attack during the provisioning process which leads to the compromise of network keys, while also assessing the under-researched key refresh mechanism. We propose a mechanism to address Blue-Mirror-oriented attacks with the goal of creating a more secure provisioning process.  To analyze the key refresh mechanism, we implemented our own full-fledged Bluetooth Mesh network and implemented a key refresh mechanism. Through this we form an assessment of the throughput, range, and impacts of a key refresh in both lab and field environments that demonstrate the suitability of our solution as a secure communication method.


Daniel Johnson

Probability-Aware Selective Protection for Sparse Iterative Solvers

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Hongyang Sun, Chair
Perry Alexander
Zijun Yao


Abstract

With the increasing scale of high-performance computing (HPC) systems, transient bit-flip errors are now more likely than ever, posing a threat to long-running scientific applications. A substantial portion of these applications involve the simulation of partial differential equations (PDEs) modeling physical processes over discretized spatial and temporal domains, with some requiring the solving of sparse linear systems. While these applications are often paired with system-level application-agnostic resilience techniques such as checkpointing and replication, the utilization of these techniques imposes significant overhead. In this work, we present a probability-aware framework that produces low-overhead selective protection schemes for the widely used Preconditioned Conjugate Gradient (PCG) method, whose performance can heavily degrade due to error propagation through the sparse matrix-vector multiplication (SpMV) operation. Through the use of a straightforward mathematical model and an optimized machine learning model, our selective protection schemes incorporate error probability to protect only certain crucial operations. An experimental evaluation using 15 matrices from the SuiteSparse Matrix Collection demonstrates that our protection schemes effectively reduce resilience overheads, often outperforming or matching both baseline and established protection schemes across all error probabilities.


Javaria Ahmad

Discovering Privacy Compliance Issues in IoT Apps and Alexa Skills Using AI and Presenting a Mechanism for Enforcing Privacy Compliance

When & Where:


LEEP2, Room 2425

Committee Members:

Bo Luo, Chair
Alex Bardas
Tamzidul Hoque
Fengjun Li
Michael Zhuo Wang

Abstract

The growth of IoT and voice assistant (VA) apps poses increasing concerns about sensitive data leaks. While privacy policies are required to describe how these apps use private user data (i.e., data practice), problems such as missing, inaccurate, and inconsistent policies have been repeatedly reported. Therefore, it is important to assess the actual data practice in apps and identify the potential gaps between the actual and declared data usage. We find that app stores lack in regulating the compliance between the app practices and their declaration, so we use AI to discover the compliance issues in these apps to assist the regulators and developers. For VA apps, we also develop a mechanism to enforce the compliance using AI. In this work, we conduct a measurement study using our framework called IoTPrivComp, which applies an automated analysis of IoT apps’ code and privacy policies to identify compliance gaps. We collect 1,489 IoT apps with English privacy policies from the Play Store. IoTPrivComp detects 532 apps with sensitive external data flows, among which 408 (76.7%) apps have undisclosed data leaks. Moreover, 63.4% of the data flows that involve health and wellness data are inconsistent with the practices disclosed in the apps’ privacy policies. Next, we focus on the compliance issues in skills. VAs, such as Amazon Alexa, are integrated with numerous devices in homes and cars to process user requests using apps called skills. With their growing popularity, VAs also pose serious privacy concerns. Sensitive user data captured by VAs may be transmitted to third-party skills without users’ consent or knowledge about how their data is processed. Privacy policies are a standard medium to inform the users of the data practices performed by the skills. However, privacy policy compliance verification of such skills is challenging, since the source code is controlled by the skill developers, who can make arbitrary changes to the behaviors of the skill without being audited; hence, conventional defense mechanisms using static/dynamic code analysis can be easily escaped. We present Eunomia, the first real-time privacy compliance firewall for Alexa Skills. As the skills interact with the users, Eunomia monitors their actions by hijacking and examining the communications from the skills to the users, and validates them against the published privacy policies that are parsed using a BERT-based policy analysis module. When non-compliant skill behaviors are detected, Eunomia stops the interaction and warns the user. We evaluate Eunomia with 55,898 skills on Amazon skills store to demonstrate its effectiveness and to provide a privacy compliance landscape of Alexa skills.


Neel Patel

Near-Memory Acceleration of Compressed Far Memory

When & Where:


LEEP2, Room G415

Committee Members:

Mohammad Alian, Chair
David Johnson
Prasad Kulkarni


Abstract

DRAM constitutes over 50% of server cost and 75% of the embodied carbon footprint of a server. To mitigate DRAM cost, far memory architectures have emerged. They can be separated into two broad categories: software-defined far memory (SFM) and disaggregated far memory (DFM). In this work, we compare the cost of SFM and DFM in terms of their required capital investment, operational expense, and carbon footprint. We show that, for applications whose data sets are compressible and have predictable memory access patterns, it takes several years for a DFM to break even with an equivalent capacity SFM in terms of cost and sustainability. We then introduce XFM, a near-memory accelerated SFM architecture, which exploits the coldness of data during SFM-initiated swap ins and outs. XFM leverages refresh cycles to seamlessly switch the access control of DRAM between the CPU and near-memory accelerator. XFM parallelizes near-memory accelerator accesses with row refreshes and removes the memory interference caused by SFM swap ins and outs. We modify an open source far memory implementation to implement a full-stack, user-level XFM. Our experimental results use a combination of an FPGA implementation, simulation, and analytical modeling to show that XFM eliminates memory bandwidth utilization when performing compression and decompression operations with SFMs of capacities up to 1TB. The memory and cache utilization reductions translate to 5∼27% improvement in the combined performance of co-running applications.


Xiangyu Chen

Toward Efficient Deep Learning for Computer Vision Applications

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Cuncong Zhong, Chair
Prasad Kulkarni
Bo Luo
Fengjun Li
Hongguo Xu

Abstract

Deep learning leads the performance in many areas of computer vision. However, after a decade of research, it tends to require larger datasets and more complex models, leading to heightened resource consumption across all fronts. Regrettably, meeting these requirements proves challenging in many real-life scenarios. First, both data collection and labeling processes entail substantial labor and time investments. This challenge becomes especially pronounced in domains such as medicine, where identifying rare diseases demands meticulous data curation. Secondly, the large size of state-of-the-art models, such as ViT, Stable Diffusion, and ConvNext, hinders their deployment on resource-constrained platforms like mobile devices. Research indicates pervasive redundancies within current neural network structures, exacerbating the issue. Lastly, even with ample datasets and optimized models, the time required for training and inference remains prohibitive in certain contexts. Consequently, there is a burgeoning interest among researchers in exploring avenues for efficient artificial intelligence.

This study endeavors to delve into various facets of efficiency within computer vision, including data efficiency, model efficiency, as well as training and inference efficiency. The data efficiency is improved from the perspective of increasing information brought by given image inputs and reducing redundancies of RGB image formats. To achieve this, we propose to integrate both spatial and frequency representations to finetune the classifier. Additionally, we propose explicitly increasing the input information density in the frequency domain by deleting unimportant frequency channels. For model efficiency, we scrutinize the redundancies present in widely used vision transformers. Our investigation reveals that trivial attention in their attention modules covers useful non-trivial attention due to its large amount. We propose mitigating the impact of accumulated trivial attention weights. To increase training efficiency, we propose SuperLoRA, a generation of LoRA adapter, to fine-tune pretrained models with few iterations and extremely-low parameters. Finally, a model simplification pipeline is proposed to further reduce inference time on mobile devices. By addressing these challenges, we aim to advance the practicality and performance of computer vision systems in real-world applications.


Past Defense Notices

Dates

Andrew Mertz

Multiple Input Single Output (MISO) Receive Processing Techniques for Linear Frequency Modulated Continuous Wave Frequency Diverse Array (LFMCW-FDA) Transmit Structures

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Chris Allen
Shannon Blunt
James Stiles

Abstract

This thesis focuses on the multiple processing techniques that can be applied to a single receive element co-located with a Frequency Diverse Array (FDA) transmission structure that illuminates a large volume to estimate the scattering characteristics of objects within the illuminated space in the range, Doppler, and spatial dimensions. FDA transmissions consist of a number of evenly spaced transmitting elements all of which are radiating a linear frequency modulated (LFM) waveform. The elements are configured into a Uniform Linear Array (ULA) and the waveform of each element is separated by a frequency spacing across the elements where the time duration of the chirp is inversely proportional to an integer multiple of the frequency spacing between elements. The complex transmission structure created by this arrangement of multiple transmitting elements can be received and processed by a single receive element. Furthermore, multiple receive processing techniques, each with their own advantages and disadvantages, can be applied to the data received from the single receive element to estimate the range, velocity, and spatial direction of targets in the illuminated volume relative to the co-located transmit array and receive element. Three different receive processing techniques that can be applied to FDA transmissions are explored. Two of these techniques are novel to this thesis, including the spatial matched filter processing technique for FDA transmission structures, and stretch processing using virtual array processing for FDA transmissions. Additionally, this thesis introduces a new type of FDA transmission structure referred to as ”slow-time” FDA.


Sameera Katamaneni

Revolutionizing Forensic Identification: A Dual-Method Facial Recognition Paradigm for Enhanced Criminal Identification

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hongyang Sun



Abstract

In response to the challenges posed by increasingly sophisticated criminal behaviour that strategically evades conventional identification methods, this research advocates for a paradigm shift in forensic practices. Departing from reliance on traditional biometric techniques such as DNA matching, eyewitness accounts, and fingerprint analysis, the study introduces a pioneering biometric approach centered on facial recognition systems. Addressing the limitations of established methods, the proposed methodology integrates two key components. Firstly, facial features are meticulously extracted using the Histogram of Oriented Gradients (HOG) methodology, providing a robust representation of individualized facial characteristics. Subsequently, a face recognition system is implemented, harnessing the power of the K-Nearest Neighbours machine learning classifier. This innovative dual-method approach aims to significantly enhance the accuracy and reliability of criminal identification, particularly in scenarios where conventional methods prove inadequate. By capitalizing on the inherent uniqueness of facial features, this research strives to introduce a formidable tool for forensic practitioners, offering a more effective means of addressing the evolving landscape of criminal tactics and safeguarding the integrity of justice systems. 


Thomas Atkins

Secure and Auditable Academic Collections Storage via Hyperledger Fabric-Based Smart Contracts

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Fengjun Li
Bo Luo


Abstract

This paper introduces a novel approach to manage collections of artifacts through smart contract access control, rooted in on-chain role-based property-level access control. This smart contract facilitates the lifecycle of these artifacts including allowing for the creation,  modification, removal, and historical auditing of the artifacts through both direct and suggested actions. This method introduces a collection object designed to store role privileges concerning state object properties. User roles are defined within an on-chain entity that maps users' signed identities to roles across different collections, enabling a single user to assume varying roles in distinct collections. Unlike existing key-level endorsement mechanisms, this approach offers finer-grained privileges by defining them on a per-property basis, not at the key level. The outcome is a more flexible and fine-grained access control system seamlessly integrated into the smart contract itself, empowering administrators to manage access with precision and adaptability across diverse organizational contexts.  This has the added benefit of allowing for the auditing of not only the history of the artifacts, but also for the permissions granted to the users.  


Christian Jones

Robust and Efficient Structure-Based Radar Receive Processing

When & Where:


Nichols Hall, Room 129 (Apollo Auditorium)

Committee Members:

Shannon Blunt, Chair
Chris Allen
Suzanne Shontz
James Stiles
Zsolt Talata

Abstract

Legacy radar systems largely rely on repeated emission of a linear frequency modulated (LFM) or chirp waveform to ascertain scattering information from an environment. The prevalence of these chirp waveforms largely stems from their simplicity to generate, process, and the general robustness they provide towards hardware effects. However, this traditional design philosophy often lacks the flexibility and dimensionality needed to address the dynamic “complexification” of the modern radio frequency (RF) environment or achieve current operational requirements where unprecedented degrees of sensitivity, maneuverability, and adaptability are necessary.

Over the last couple of decades analog-to-digital and digital-to-analog technologies have advanced exponentially, resulting in tremendous design degrees of freedom and arbitrary waveform generation (AWG) capabilities that enable sophisticated design of emissions to better suit operational requirements. However, radar systems typically require high powered amplifiers (HPA) to contend with the two-way propagation. Thus, transmitter-amenable waveforms are effectively constrained to be both spectrally contained and constant amplitude, resulting in a non-convex NP-hard design problem.

While determining the global optimal waveform can be intractable for even modest time-bandwidth products (TB), locally optimal transmitter-amenable solutions that are “good enough” are often readily available. However, traditional matched filtering may not satisfy operational requirements for these sub-optimal emissions. Using knowledge of the transmitter-receiver chain, a discrete linear model can be formed to express the relationship between observed measurements and the complex scattering of the environment. This structured representation then enables more sophisticated least-square and adaptive estimation techniques to better satisfy operational needs, improve estimate fidelity, and extend dynamic range.

However, radar dimensionality can be enormous and brute force implementations of these techniques may have unwieldy computational burden on even cutting-edge hardware. Additionally, a discrete linear representation is fundamentally an approximation of the dynamic continuous physical reality and model errors may induce bias, create false detections, and limit dynamic range. As such, these structure-based approaches must be both computationally efficient and robust to reality.

Here several generalized discrete radar receive models and structure-based estimation schemes are introduced. Modifications and alternative solutions are then proposed to improve estimate fidelity, reduce computational complexity, and provide further robustness to model uncertainty.


Shawn Robertson

A secure framework for at risk populations in austere environments utilizing Bluetooth Mesh communications

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Alex Bardas, Chair
Drew Davidson
Fengjun Li
Bo Luo
Huazhen Fang

Abstract

Austere environments are defined by the US Military as those regularly experiencing significant environmental hazards, have limited access to reliable electricity, or require prolonged use of body armor or chemical protection equipment.  We propose that in modern society, this definition can extend also to telecommunications infrastructure, areas where an active adversary controls the telecommunications infrastructure and works against the people such as protest areas in Iran, Russia, and China or areas experiencing conflict and war such as Eastern Ukraine.  People in these austere environments need basic text communications and the ability to share simple media like low resolution pictures.  This communication is complicated by the adversaries’ capabilities as a potential nation-state actor. To address this, Low Earth Orbit satellite clusters, like Starlink, can be used to exfiltrate communications completely independent of local infrastructure.  This, however, creates another issue as these satellite ground terminals are not inherently designed to support many users over a large area.  Traditional means of extending this connectivity create both power and security concerns.  We propose that Bluetooth Mesh can be used to extend connectivity and provide communications. 

Bluetooth Mesh provides a low signal footprint to reduce the risk of detection, blends into existent signals within the 2.4ghz spectrum, has security aspects in the specification, and devices can utilize small batteries maintaining a covert form factor.  To realize this security enhancements must be made to both the provisioning process of the Bluetooth Mesh network and a key management scheme that ensures the regular and secure changing of keys either in response to an adversary’s action or as a prevention of an adversary’s action must be implemented.  We propose a provisioning process using whitelists on both provisioner and device and uses attestation for passwords allowing devices to be provisioned on deployment to protect the at-risk population and prevent BlueMirror attacks.  We also propose, implement, and measure the impact of an automated key exchange that meets the Bluetooth Mesh 3 phase specification.  Our experimentation, in a field environment, shows that Bluetooth Mesh has the throughput, reliability and security to meet the requirements of at-risk populations in austere environments. 


Venkata Mounika Keerthi

Evaluating Dynamic Resource Management for Bulk Synchronous Parallel Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Hongyang Sun, Chair
David Johnson
Prasad Kulkarni


Abstract

Bulk Synchronous Parallel (BSP) applications comprise distributed tasks that synchronize at periodic intervals, known as supersteps. Efficient resource management is critical for the performance of BSP applications, especially when deployed on multi-tenant cloud platforms. This project evaluates and extends some existing resource management algorithms for BSP applications, while focusing on dynamic schedulers to mitigate stragglers under variable workloads. In particular, a Dynamic Window algorithm is implemented to compute resource configurations optimized over a customizable timeframe by considering workload variability. The algorithm applies a discount factor prioritizing improvements in earlier supersteps to account for increasing prediction errors in future supersteps. It represents a more flexible approach compared to the Static Window algorithm that recomputes the resource configuration after a fixed number of supersteps. A comparative evaluation of the Dynamic Window algorithm against existing techniques, including the Static Window algorithm, a Dynamic Model Predictive Control (MPC) algorithm, and a Reinforcement Learning (RL) based algorithm, is performed to quantify potential reductions in application duration resulting from enhanced superstep-level customization. Further evaluations also show the impacts of window size and checkpoint (reconfiguration) cost on these algorithms, gaining insights into their dynamics and performance trade-offs.

Degree: MS Project Defense (CS)


Sohan Chandra

Predicting inorganic nitrogen content in the soil using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Taejoon Kim, Chair
Prasad Kulkarni
Cuncong Zhong


Abstract

This ground-breaking project addresses a critical issue in crop production: precisely determining plant-available inorganic nitrogen (IN) in soil to optimize fertilization strategies. Current methodologies frequently struggle with the complexities of determining a soil's nitrogen content, resorting to approximations and labor-intensive soil testing procedures that can lead to the pitfalls of under or over-fertilization, endangering agricultural productivity. Recognizing the scarcity of historical inorganic nitrogen (IN) data, this solution employs a novel approach that employs Generative Adversarial Networks (GANs) to generate statistically similar inorganic nitrogen (IN) data. 

 

This synthetic data set works in tandem with data from the Decision Support System for Agrotechnology Transfer (DSSAT). To address the data's inherent time-series nature, we use the power of Long Short-Term Memory (LSTM) neural networks in our predictive model. The resulting model is a sophisticated and accurate tool that can provide reliable estimates without extensive soil testing. This not only ensures precision in nutrient management but is also a cost-effective and dependable solution for crop production optimization. 


Thomas Woodruff

Model Predictive Control of Nonlinear Latent Force Models

When & Where:


M2SEC, Room G535

Committee Members:

Jim Stiles, Chair
Michael Branicky
Heechul Yun


Abstract

Model Predictive Control (MPC) has emerged as a potent approach for controlling nonlinear systems in the robotics field and various other engineering domains. Its efficacy lies in its capacity to predictively optimize system behavior while accommodating state and input constraints. Although MPC typically relies on precise dynamic models to be effective, real-world dynamic systems often harbor uncertainties. Ignoring these uncertainties can lead to performance degradation or even failure in MPC.

Nonlinear latent force models, integrating latent uncertainties characterized as Gaussian processes, hold promise for effectively representing nonlinear uncertain systems. Specifically, these models incorporate the state-space representation of a Gaussian process into known nonlinear dynamics, providing the ability to simultaneously predict future states and uncertainties.

This thesis delves into the application of MPC to nonlinear latent force models, aiming to control nonlinear uncertain systems. We formulate a stochastic MPC problem and, to address the ensuing receding-horizon stochastic optimization problem, introduce a scenario-based approach for a deterministic approximation. The resulting scenario-based approach is assessed through simulation studies centered on the motion planning of an autonomous vehicle. The simulations demonstrate the controller's adeptness in managing constraints and consistently mitigating the effects of disturbances. This proposed approach holds promise for various robotics applications and beyond.


Sai Soujanya Ambati

BERT-NEXT: Exploring Contextual Sentence Understanding

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hongyang Sun



Abstract

The advent of advanced natural language processing (NLP) techniques has revolutionized the way we handle textual data. This project presents the implementation of exploring contextual sentence understanding on the Quora Insincere Questions dataset using the pretrained BERT architecture. In this study, we explore the application of BERT, a bidirectional transformer model, for text classification tasks. The goal is to classify if a question contains hateful, disrespectful or toxic content. BERT represents the state-of-the-art in language representation models and has shown strong performance on various natural language processing tasks. In this project, the pretrained BERT base model is fine-tuned on a sample of the Quora dataset for next sentence prediction. Results show that with just 1% of the data (around 13,000 examples), the fine-tuned model achieves over 90% validation accuracy in identifying insincere questions after 4 epochs of training. This demonstrates the effectiveness of leveraging BERT for text classification tasks with minimal labeled data requirements. Being able to automatically detect toxic, hateful or disrespectful content is important to maintain healthy online discussions. However, the nuances of human language make this a challenging natural language processing problem. Insincere questions may contain offensive language, hate speech, or misinformation, making their identification crucial for maintaining a positive and safe online environment. In this project, we explore using the pretrained Bidirectional Encoder Representations from Transformers (BERT) model for next sentence prediction on the task of identifying insincere questions.


Swathi Koyada

Feature balancing of demographic data using SMOTE

When & Where:


Zoom Meeting, please email jgrisafe@ku.edu for defense link.

Committee Members:

Prasad Kulkarni, Chair
Cuncong Zhong



Abstract

The research investigates the utilization of Synthetic Minority Oversampling Techniques (SMOTE) in the context of machine learning models applied to biomedical datasets, particularly focusing on mitigating demographic data disparities. The study is most relevant to underrepresented demographic data. The primary objective is to enhance the SMOTE methodology, traditionally designed for addressing class imbalances, to specifically tackle ethnic imbalances within feature representation. In contrast to conventional approaches that merely exclude race as a fundamental or additive factor without rectifying misrepresentation, this work advocates an innovative modification of the original SMOTE framework, emphasizing dataset augmentation based on participants' demographic backgrounds. The predominant aim of the project is to enhance and reshape the distribution to optimize model performance for unspecified demographic subgroups during training. However, the outcomes indicate that despite the application of feature balancing in this adapted SMOTE method, no statistically significant enhancement in accuracy was discerned. This observation implies that while rectifying imbalances is crucial, it may not independently suffice to overcome challenges associated with heterogeneity in species representation within machine learning models applied to biomedical databases. Consequently, further research endeavors are necessary to identify novel methodologies aimed at enhancing sampling accuracy and fairness within diverse populations.