Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


RokunuzJahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior  by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.

This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.


Tanvir Hossain

Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based Platform

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.


Hara Madhav Talasila

Radiometric Calibration of Radar Depth Sounder Data Products

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Carl Leuschen, Chair
Patrick McCormick
James Stiles
Jilu Li
Leigh Stearns

Abstract

Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.

As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.


Christopher Ord

A Hardware-Agnostic Simultaneous Transmit And Receive (STAR) Architecture for the Transmission of Non-Repeating FMCW Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rachel Jarvis, Chair
Shannon Blunt
Patrick McCormick


Abstract

With the increasing congestion of the usable RF spectrum, it is increasingly necessary for communication and radar systems to share the same frequencies without disturbing one another. To accomplish this, research has focused on designing a class of non-repeating radar waveforms that appear as noise at the receiver of uncooperative systems, but the peak power from high-power pulsed systems can still overwhelm nearby in-band systems. Therefore, to minimize peak power while maximizing the total energy on target, radar systems must transition to operating at a 100% duty cycle, which inherently requires Simultaneous Transmit and Receive (STAR) operation.

One inherent difficulty when operating monostatic STAR systems is the direct path coupling interference that can saturate a number of components in the radar’s receive chain, which makes digital processing methods that remove this interference ineffective. This thesis proposes a method to reduce the self-interference between the radar’s transmitter in receiver prior to the receiver’s sensitive components to increase the power that the radar can transmit at. By using a combination of tests that manipulate the timing, phase, and magnitude of a secondary waveform that is injected into the radar just before the receiver, upwards of 35.0 dB of self-interference cancellation is achieved for radar waveforms with bandwidths of up to 100 MHz at both S-band and X-band in both simulation and open-air testing.


Past Defense Notices

Dates

Kaidong Li

Accurate and Robust Object Detection and Classification Based on Deep Neural Networks

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Cuncong Zhong, Chair
Taejoon Kim
Fengjun Li
Bo Luo
Haiyang Chao

Abstract

Recent years have seen tremendous developments in the field of computer vision and its extensive applications. The fundamental task, image classification, benefiting from deep convolutional neural networks (CNN)'s extraordinary ability to extract deep semantic information from input data, has become the backbone for many other computer vision tasks, like object detection and segmentation. A modern detection usually has bounding-box regression and class prediction with a pre-trained classification model as the backbone. The architecture is proven to produce good results, however, improvements can be made with closer inspections. A detector takes a pre-trained CNN from the classification task and selects the final bounding boxes from multiple proposed regional candidates by a process called non-maximum suppression (NMS), which picks the best candidates by ranking their classification confidence scores. The localization evaluation is absent in the entire process. Another issue is the classification uses one-hot encoding to label the ground truth, resulting in an equal penalty for misclassifications between any two classes without considering the inherent relations between the classes. Ultimately, the realms of 2D image classification and 3D point cloud classification represent distinct avenues of research, each relying on significantly different architectures. Given the unique characteristics of these data types, it is not feasible to employ models interchangeably between them.

My research aims to address the following issues. (1) We proposed the first location-aware detection framework for single-shot detectors that can be integrated into any single-shot detectors. It boosts detection performance by calibrating the ranking process in NMS with localization scores. (2) To more effectively back-propagate gradients, we designed a super-class guided architecture that consists of a superclass branch (SCB) and a finer class branch (FCB). To further increase the effectiveness, the features from SCB with high-level information are fed to FCB to guide finer class predictions. (3) Recent works have shown 3D point cloud models are extremely vulnerable under adversarial attacks, which poses a serious threat to many critical applications like autonomous driving and robotic controls. To gap the domain difference in 3D and 2D classification and to increase the robustness of CNN models on 3D point cloud models, we propose a family of robust structured declarative classifiers for point cloud classification. We experimented with various 3D-to-2D mapping algorithm, bridging the gap between 2D and 3D classification. Furthermore, we empirically validate the internal constrained optimization mechanism effectively defend adversarial attacks through implicit gradients.


Andrew Mertz

Multiple Input Single Output (MISO) Receive Processing Techniques for Linear Frequency Modulated Continuous Wave Frequency Diverse Array (LFMCW-FDA) Transmit Structures

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Patrick McCormick, Chair
Chris Allen
Shannon Blunt
James Stiles

Abstract

This thesis focuses on the multiple processing techniques that can be applied to a single receive element co-located with a Frequency Diverse Array (FDA) transmission structure that illuminates a large volume to estimate the scattering characteristics of objects within the illuminated space in the range, Doppler, and spatial dimensions. FDA transmissions consist of a number of evenly spaced transmitting elements all of which are radiating a linear frequency modulated (LFM) waveform. The elements are configured into a Uniform Linear Array (ULA) and the waveform of each element is separated by a frequency spacing across the elements where the time duration of the chirp is inversely proportional to an integer multiple of the frequency spacing between elements. The complex transmission structure created by this arrangement of multiple transmitting elements can be received and processed by a single receive element. Furthermore, multiple receive processing techniques, each with their own advantages and disadvantages, can be applied to the data received from the single receive element to estimate the range, velocity, and spatial direction of targets in the illuminated volume relative to the co-located transmit array and receive element. Three different receive processing techniques that can be applied to FDA transmissions are explored. Two of these techniques are novel to this thesis, including the spatial matched filter processing technique for FDA transmission structures, and stretch processing using virtual array processing for FDA transmissions. Additionally, this thesis introduces a new type of FDA transmission structure referred to as ”slow-time” FDA.


Ragib Shakil Rafi

Nonlinearity Assisted Mie Scattering from Nanoparticles

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Alessandro Salandrino , Chair
Shima Fardad
Morteza Hashemi
Rongqing Hui
Judy Z Wu

Abstract

Scattering by nanoparticles is an exciting branch of physics to control and manipulate light. More specifically, there have been fascinating developments regarding light scattering by sub-wavelength particles, including high-index dielectric and metal particles for their applications in optical resonance phenomena, detecting the fluorescence of molecules, enhancing Raman scattering, transferring the energy to the higher order modes, sensing, and photodetector technologies. This research area has recently gained renewed attention with the study of near-field effects at the nanoscale in advanced regimes of operation, including nonlinear effects and the time-varying parametric modulation of local material properties. When the particle size is comparable to or slightly bigger than the incident wavelength, Mie solutions to Maxwell's equations describe these electromagnetic scattering problems. The addition and excitation of nonlinear effects in these high-indexed sub-wavelength dielectric and plasmonic particles holds promise to improve the existing performance of the system or provide additional features directed toward novel applications. This dissertation explores Mie scattering from dielectric and plasmonic particles in the presence of nonlinear effects, more specifically second and third order nonlinear effects. For numerical analysis, an in-house Rigorous Coupled Analysis (RCWA) method has been developed in a Matlab environment and validated based on designing metasurfaces and comparing them with established results. For dielectrics, this dissertation presents a numerical study of the linear and nonlinear diffraction and focusing properties of dielectric metasurfaces consisting of silicon microcylinder arrays resting on a silicon substrate. Upon diffraction, such structures lead to the formation of near-field intensity profiles reminiscent of photonic nanojets and propagate similarly. The results indicate that the Kerr nonlinear effect i.e. third order nonlinear effect enhances light concentration throughout the generated photonic jet with an increase in the intensity of about 20% compared to the linear regime for the power levels considered in this work. The transverse beamwidth remains subwavelength in all cases, and the nonlinear effect reduces the full width. On the other hand, plasmonic structures give rise to localized surface plasmons and excitations of the conduction electrons within metallic nanostructures. These aren't propagating but instead confined to the vicinity of the nanostructure, interacting with the electromagnetic field. These modes emerge from the scattering between small conductive nanoparticles with an oscillating electromagnetic field. This dissertation introduces a novel mechanism to transfer energy from excited dipolar mode to such higher-order subradiant localized mode. Recent advancements in time-varying structures that help relax photon energy conservation constraints and a newly proposed plasmonic parametric resonance pave the way for this work. With the help of the second-order nonlinear wave mixing process and parametric modulation of the dielectric permittivity in a medium surrounding metal particles, we have introduced a way to accomplish the otherwise nearly impossible task to selectively couple energy into specific high order modes of a nanostructures. This work further shows that the oscillating mode amplitude reaches a steady state, and the steady state establishes the ideal modulation conditions that enhance the amplitude of the high-order mode.


Ben Liu

Computational Microbiome Analysis: Method Development, Integration and Clinical Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Cuncong Zhong, Chair
Esam El-Araby
Bo Luo
Zijun Yao
Mizuki Azuma

Abstract

Metagenomics is the study of microbial genomes from one common environment. Metagenomic data is directly derived from all microorganisms present in the environmental samples, in- including those inaccessible through conventional methods like laboratory cultures. Thus it offers an unbiased view of microbial communities, enabling researchers to explore not only the taxonomic composition (identifying which microorganisms are present) but also the community’s metabolic functions.

The metagenomic data consists of a huge number of fragmented DNA sequences from diverse microorganisms with different abundance. These characteristics pose challenges to analysis and impede practical applications. Firstly, the development of an efficient detection tool for a specific target from metagenomic data is confronted by the challenge of daunting data size. Secondly, the accuracy of the detection tool is also challenged by the incompleteness of metagenomic data. Thirdly, numerous analysis tools are designed for individual detection targets, and many detection targets are contained within the data, there is a need for comprehensive and scalable integration of existing resources.

In this dissertation, we conducted the computational microbiome analysis at different levels: (1) We first developed an assembly graph-based ncRNA searching tool, named DRAGoM, to im- improve the detection quality in metagenomic data. (2) We then developed an automatic detection model, named SNAIL, to automatically detect names of bioinformatic resources from biomedical literature for comprehensive and scalable organizing resources. We also developed a method to automatically annotate sentences for training SNAIL, which not only benefits the performance of SNAIL but also allows it to be trained on both manual and machine-annotated data, thus minimizing the need for extensive manual data labeling efforts. (3) We applied different analyzing tools to metagenomic datasets from a series of clinical studies and developed models to predict therapeutic benefits from immunotherapy in non-small-cell lung cancer patients using human gut microbiome signatures.


Amin Shojaei

Exploring Cooperative and Robust Multi-Agent Reinforcement Learning in Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Taejoon Kim
Prasad Kulkarni
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicle (EV). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize the grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. Within this context, first, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state. Secondly, we investigate the challenges associated with distributed MARL techniques, with a special focus on the central training distributed execution (CTDE) methods. Throughout this research, we highlight the significance of cooperation in MARL for achieving autonomous control in smart grid systems and other cyber-physical domains. Thirdly, we propose a novel robust MARL framework using a hierarchical structure. We perform an extensive analysis and evaluation of our proposed hierarchical MARL model for large-scale EV networks, thereby addressing the scalability and robustness challenges as the number of agents within a NCPS increases.


Ahmet Soyyigit

Anytime Computing Techniques for Lidar-Based Perception in Cyber-Physical Systems

When & Where:


Nichols Hall, Room 317 (Richard K. Moore Conference Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advancements in artificial intelligence (AI), particularly the introduction of deep neural networks (DNNs), have significantly enhanced CPS autonomy, notably boosting perception capabilities. 

CPS perception aims to discern, classify, and track the objects of interest in the operational environment, a task considerably challenging for computers in three-dimensional (3D) space. For this task of detecting objects, leveraging lidar sensors and processing their readings with deep neural networks (DNN) has become popular due to their excellent performance. 

However, in systems like self-driving cars and drones, object detection must be both accurate and timely, posing a challenge due to the high computational demand of lidar object detection DNNs. Furthermore, lidar object detection DNNs lack the capability to dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). This adaptability is crucial since deadline constraints can change based on the operational environment and the internal status of the system.  

Prior research aimed at anytime computing for object detection DNNs using camera images are not applicable when considered to lidar-based detection due to architectural differences. Addressing this challenge, this thesis focuses on proposing novel techniques, such as Anytime-Lidar and VALO (Versatile Anytime Lidar Object Detection). These innovations aim to enable lidar-based object detection DNNs to make effective tradeoffs between latency and accuracy. Finally, the thesis aims to integrate the proposed anytime object detection techniques into unmanned aerial vehicles and introduce a system-level scheduler capable of managing multiple anytime computation capable tasks.  


Andrew Mertz

Multiple Input Single Output (MISO) Receive Processing Techniques for Linear Frequency Modulated Continuous Wave Frequency Diverse Array (LFMCW-FDA) Transmit Structures

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Chris Allen
Shannon Blunt
James Stiles

Abstract

This thesis focuses on the multiple processing techniques that can be applied to a single receive element co-located with a Frequency Diverse Array (FDA) transmission structure that illuminates a large volume to estimate the scattering characteristics of objects within the illuminated space in the range, Doppler, and spatial dimensions. FDA transmissions consist of a number of evenly spaced transmitting elements all of which are radiating a linear frequency modulated (LFM) waveform. The elements are configured into a Uniform Linear Array (ULA) and the waveform of each element is separated by a frequency spacing across the elements where the time duration of the chirp is inversely proportional to an integer multiple of the frequency spacing between elements. The complex transmission structure created by this arrangement of multiple transmitting elements can be received and processed by a single receive element. Furthermore, multiple receive processing techniques, each with their own advantages and disadvantages, can be applied to the data received from the single receive element to estimate the range, velocity, and spatial direction of targets in the illuminated volume relative to the co-located transmit array and receive element. Three different receive processing techniques that can be applied to FDA transmissions are explored. Two of these techniques are novel to this thesis, including the spatial matched filter processing technique for FDA transmission structures, and stretch processing using virtual array processing for FDA transmissions. Additionally, this thesis introduces a new type of FDA transmission structure referred to as ”slow-time” FDA.


Sameera Katamaneni

Revolutionizing Forensic Identification: A Dual-Method Facial Recognition Paradigm for Enhanced Criminal Identification

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Hongyang Sun



Abstract

In response to the challenges posed by increasingly sophisticated criminal behaviour that strategically evades conventional identification methods, this research advocates for a paradigm shift in forensic practices. Departing from reliance on traditional biometric techniques such as DNA matching, eyewitness accounts, and fingerprint analysis, the study introduces a pioneering biometric approach centered on facial recognition systems. Addressing the limitations of established methods, the proposed methodology integrates two key components. Firstly, facial features are meticulously extracted using the Histogram of Oriented Gradients (HOG) methodology, providing a robust representation of individualized facial characteristics. Subsequently, a face recognition system is implemented, harnessing the power of the K-Nearest Neighbours machine learning classifier. This innovative dual-method approach aims to significantly enhance the accuracy and reliability of criminal identification, particularly in scenarios where conventional methods prove inadequate. By capitalizing on the inherent uniqueness of facial features, this research strives to introduce a formidable tool for forensic practitioners, offering a more effective means of addressing the evolving landscape of criminal tactics and safeguarding the integrity of justice systems. 


Thomas Atkins

Secure and Auditable Academic Collections Storage via Hyperledger Fabric-Based Smart Contracts

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Fengjun Li
Bo Luo


Abstract

This paper introduces a novel approach to manage collections of artifacts through smart contract access control, rooted in on-chain role-based property-level access control. This smart contract facilitates the lifecycle of these artifacts including allowing for the creation,  modification, removal, and historical auditing of the artifacts through both direct and suggested actions. This method introduces a collection object designed to store role privileges concerning state object properties. User roles are defined within an on-chain entity that maps users' signed identities to roles across different collections, enabling a single user to assume varying roles in distinct collections. Unlike existing key-level endorsement mechanisms, this approach offers finer-grained privileges by defining them on a per-property basis, not at the key level. The outcome is a more flexible and fine-grained access control system seamlessly integrated into the smart contract itself, empowering administrators to manage access with precision and adaptability across diverse organizational contexts.  This has the added benefit of allowing for the auditing of not only the history of the artifacts, but also for the permissions granted to the users.  


Christian Jones

Robust and Efficient Structure-Based Radar Receive Processing

When & Where:


Nichols Hall, Room 129 (Apollo Auditorium)

Committee Members:

Shannon Blunt, Chair
Chris Allen
Suzanne Shontz
James Stiles
Zsolt Talata

Abstract

Legacy radar systems largely rely on repeated emission of a linear frequency modulated (LFM) or chirp waveform to ascertain scattering information from an environment. The prevalence of these chirp waveforms largely stems from their simplicity to generate, process, and the general robustness they provide towards hardware effects. However, this traditional design philosophy often lacks the flexibility and dimensionality needed to address the dynamic “complexification” of the modern radio frequency (RF) environment or achieve current operational requirements where unprecedented degrees of sensitivity, maneuverability, and adaptability are necessary.

Over the last couple of decades analog-to-digital and digital-to-analog technologies have advanced exponentially, resulting in tremendous design degrees of freedom and arbitrary waveform generation (AWG) capabilities that enable sophisticated design of emissions to better suit operational requirements. However, radar systems typically require high powered amplifiers (HPA) to contend with the two-way propagation. Thus, transmitter-amenable waveforms are effectively constrained to be both spectrally contained and constant amplitude, resulting in a non-convex NP-hard design problem.

While determining the global optimal waveform can be intractable for even modest time-bandwidth products (TB), locally optimal transmitter-amenable solutions that are “good enough” are often readily available. However, traditional matched filtering may not satisfy operational requirements for these sub-optimal emissions. Using knowledge of the transmitter-receiver chain, a discrete linear model can be formed to express the relationship between observed measurements and the complex scattering of the environment. This structured representation then enables more sophisticated least-square and adaptive estimation techniques to better satisfy operational needs, improve estimate fidelity, and extend dynamic range.

However, radar dimensionality can be enormous and brute force implementations of these techniques may have unwieldy computational burden on even cutting-edge hardware. Additionally, a discrete linear representation is fundamentally an approximation of the dynamic continuous physical reality and model errors may induce bias, create false detections, and limit dynamic range. As such, these structure-based approaches must be both computationally efficient and robust to reality.

Here several generalized discrete radar receive models and structure-based estimation schemes are introduced. Modifications and alternative solutions are then proposed to improve estimate fidelity, reduce computational complexity, and provide further robustness to model uncertainty.