Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Masoud Ghazikor
Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum BandsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Morteza Hashemi, ChairVictor Frost
Prasad Kulkarni
Abstract
UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.
In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.
Ganesh Nurukurti
Customer Behavior Analytics and Recommendation System for E-CommerceWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Han Wang
Abstract
In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.
The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.
To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.
The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.
In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.
Srijanya Chetikaneni
Plant Disease Prediction Using Transfer LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Han Wang
Abstract
Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small.
All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.
Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.
This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.
Ahmet Soyyigit
Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical SystemsWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Committee Members:
Heechul Yun, ChairMichael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri
Abstract
The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.
CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.
Rahul Purswani
Finetuning Llama on custom data for QA tasksWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairDrew Davidson
Prasad Kulkarni
Abstract
Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.
Rithvij Pasupuleti
A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific LiteratureWhen & Where:
LEEP2, Room 2133
Committee Members:
Cuncong Zhong, ChairDongjie Wang
Han Wang
Zijun Yao
Abstract
The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity.
The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.
Vishnu Chowdary Madhavarapu
Automated Weather Classification Using Transfer LearningWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Committee Members:
David Johnson, ChairPrasad Kulkarni
Dongjie Wang
Abstract
This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.
RokunuzJahan Rudro
Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory StudyWhen & Where:
Eaton Hall, Room 1A
Committee Members:
Sumaiya Shomaji, ChairDavid Johnson
Zijun Yao
Alexandra Kondyli
Abstract
Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior by understanding the psychological and behavioral characteristics that influence the risk of crashes.
Md Mashfiq Rizvee
Energy Optimization in Multitask Neural Networks through Layer SharingWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Sumaiya Shomaji, ChairTamzidul Hoque
Han Wang
Abstract
Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively.
Fairuz Shadmani Shishir
Parameter-Efficient Computational Drug Discovery using Deep LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Sumaiya Shomaji, ChairTamzidul Hoque
Hongyang Sun
Abstract
The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles.
Soma Pal
Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilersWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairEsam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng
Abstract
Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA) C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.
In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.
Nyamtulla Shaik
AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in AutismWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Sumaiya Shomaji, ChairBo Luo
Dongjie Wang
Abstract
Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.
Alexander Rodolfo Lara
Creating a Faradaic Efficiency Graph Dataset Using Machine LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Zijun Yao, ChairSumaiya Shomaji
Kevin Leonard
Abstract
Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.
This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.
Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.
Amin Shojaei
Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart GridsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Morteza Hashemi, ChairAlex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri
Abstract
Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.
As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.
Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.
Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.
Asrith Gudivada
Custom CNN for Object State Classification in Robotic CookingWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
David Johnson, ChairPrasad Kulkarni
Dongjie Wang
Abstract
This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in robotic cooking environments. Recognizing fine-grained object states is critical for context-aware manipulation yet remains a challenging task due to the visual similarity between states and the limited availability of cooking-specific datasets. To address these challenges, we built a lightweight, non-pretrained CNN trained on a curated dataset of 11 object states. Starting with a baseline architecture, we progressively enhanced the model using data augmentation, optimized dropout, batch normalization, Inception modules, and residual connections. These improvements led to a performance increase from ~45% to ~52% test accuracy. The final model demonstrates improved generalization and training stability, showcasing the effectiveness of combining classical and advanced deep learning techniques. This work contributes toward real-time state recognition for autonomous robotic cooking systems, with implications for assistive technologies in domestic and elder care settings.
Tanvir Hossain
Gamified Learning of Computing Hardware Fundamentals Using FPGA-Based PlatformWhen & Where:
Nichols Hall, Room 250 (Gemini Room)
Committee Members:
Tamzidul Hoque, ChairEsam El-Araby
Sumaiya Shomaji
Abstract
The growing dependence on electronic systems in consumer and mission critical domains requires engineers who understand the inner workings of digital hardware. Yet many students bypass hardware electives, viewing them as abstract, mathematics heavy, and less attractive than software courses. Escalating workforce shortages in the semiconductor industry and the recent global chip‑supply crisis highlight the urgent need for graduates who can bridge hardware knowledge gaps across engineering sectors. In this thesis, I have developed FPGA‑based games, embedded in inclusive curricular modules, which can make hardware concepts accessible while fostering interest, self‑efficacy, and positive outcome expectations in hardware engineering. A design‑based research methodology guided three implementation cycles: a pilot with seven diverse high‑school learners, a multiweek residential summer camp with high‑school students, and a fifteen‑week multidisciplinary elective enrolling early undergraduate engineering students. The learning experiences targeted binary arithmetic, combinational and sequential logic, state‑machine design, and hardware‑software co‑design. Learners also moved through the full digital‑design flow, HDL coding, functional simulation, synthesis, place‑and‑route, and on‑board verification. In addition, learners explored timing analysis, register‑transfer‑level abstractions, and simple processor datapaths to connect low‑level circuits with system‑level behavior. Mixed‑method evidence was gathered through pre‑ and post‑content quizzes, validated surveys of self‑efficacy and outcome expectations, focus groups, classroom observations, and gameplay analytics. Paired‑sample statistics showed reliable gains in hardware‑concept mastery, self‑efficacy, and outcome expectations. This work contributes a replicable framework for translating foundational hardware topics into modular, game‑based learning activities, empirical evidence of their effectiveness across secondary and early‑college contexts, and design principles for educators who seek to integrate equitable, hands‑on hardware experiences into existing curricula.
Hara Madhav Talasila
Radiometric Calibration of Radar Depth Sounder Data ProductsWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
Carl Leuschen, ChairPatrick McCormick
James Stiles
Jilu Li
Leigh Stearns
Abstract
Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.
As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets and crossovers will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.
Christopher Ord
A Hardware-Agnostic Simultaneous Transmit And Receive (STAR) Architecture for the Transmission of Non-Repeating FMCW WaveformsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rachel Jarvis, ChairShannon Blunt
Patrick McCormick
Abstract
With the increasing congestion of the usable RF spectrum, it is increasingly necessary for communication and radar systems to share the same frequencies without disturbing one another. To accomplish this, research has focused on designing a class of non-repeating radar waveforms that appear as noise at the receiver of uncooperative systems, but the peak power from high-power pulsed systems can still overwhelm nearby in-band systems. Therefore, to minimize peak power while maximizing the total energy on target, radar systems must transition to operating at a 100% duty cycle, which inherently requires Simultaneous Transmit and Receive (STAR) operation.
One inherent difficulty when operating monostatic STAR systems is the direct path coupling interference that can saturate a number of components in the radar’s receive chain, which makes digital processing methods that remove this interference ineffective. This thesis proposes a method to reduce the self-interference between the radar’s transmitter in receiver prior to the receiver’s sensitive components to increase the power that the radar can transmit at. By using a combination of tests that manipulate the timing, phase, and magnitude of a secondary waveform that is injected into the radar just before the receiver, upwards of 35.0 dB of self-interference cancellation is achieved for radar waveforms with bandwidths of up to 100 MHz at both S-band and X-band in both simulation and open-air testing.
Past Defense Notices
LIYAO WANG
High Current Switch for Switching Power SuppliesWhen & Where:
2001B Eaton Hall
Committee Members:
Jim Stiles, ChairChris Allen
Glenn Prescott
Abstract
One of the main components in switching power supply is switch. However, there are two main negative issues the switch will cause in a switching power supply. The first one is that the power dissipation of the switch will be unimaginable high, especially when the current go through the switch gets higher. Secondly, because there are so many parasitic inductances and capacitances in the circuit, transient will cause problems when the operating state of the switch changes. In this project, P-Spice is used to design a qualify swith and suppress the negative effect as much as possible. The purpose of this project is to design a switch for hardware design in switching power supplies. Therefore, all the components used in P-Spice simulation are the actual models which is able to get from electronic market, and all the situations which may be happen in hardware design will be consider in the simulation. Both Mosfet and bipolar transistor switch will be discussed in the project. The project will give solutions for reducing the power dissipation cause by the switch and transient problems.
MANOGNA BHEEMINENI
Implementation and Comparison of FSA FiltersWhen & Where:
246 Nichols Hall
Committee Members:
Fengjun Li, ChairVictor Frost
Bo Luo
Abstract
Packet Filtering is a process of filtering the packets based on the filters rules that are being defines by the user. The focus of this project is to implement and compare the performance of two different packet filtering techniques (SFSA and PFSA), that uses FSA(finite state automaton) for the filtering process. Stateless FSA(SFSA) is a packet filtering technique where an FSA is generated based on the input packet and the filtering criteria. Then succeed early algorithm is applied to the automaton which simplifies by the automaton by shortening long trails to the the final state which reduces the packet filtering time. It also uses transition compaction algorithm which helps in avoiding certain areas in packet inspection which are not necessary for packet filtering.
PFSA (predicates of FSA) does the filtering based on predicates generated by the predicate evaluator. In this filtering process the FSA generated as state transitions which depend on the input symbol and also the predicate value. In order to simplify the FSA algorithms like predicates Cartesian product and predicates anticipation algorithms are being used. These algorithms consider all states that are possible and merge them to make the FSA deterministic. There is also a proto FSA that is being generated for the predicates to speed up the filtering process.
SREENIVAS VEKAPU
Chemocaffe: A Platform providing Deep Learning as a Service to Cheminformatics ResearchersWhen & Where:
2001B Eaton Hall
Committee Members:
Luke Huan, ChairMan Kong
Prasad Kulkarni
Abstract
Neural Networks were studied and applied to many research problems from a long time. With gaining popularity of deep neural networks in the area of machine learning, many researchers in various domains want to try deep learning framework. Deep learning requires lot of memory and high processing power. One way of doing it faster is to make use of GPUs which use distributed and parallel processing, thereby increasing speed. But because of the computation (lot of vector and matrix operations) deep learning requires, expensive infrastructure required (GPUs and clusters), hardware and software installation overhead, not many researchers prefer deep learning. The current application is a solution to cheminformatics problems using Convolutional Architecture for Fast Feature Embedding (Caffe) deep learning framework. The application provides a framework/service to researchers who want to try deep learning on their datasets. The application accepts datasets from users along with options for hyper parameter configuration, runs cross fold validation on the training dataset, and makes predictions on the test dataset. The (tuning) results of running caffe on the training dataset and predictions made on test dataset are sent to user via an email. The current version supports binary classification that predicts activity/inactivity of a chemical compound based on molecular fingerprints which are binary features.
YUFEI CHENG
Future Internet Routing Design for Massive Failures and AttacksWhen & Where:
246 Nichols Hall
Committee Members:
James Sterbenz, ChairJiannong Cao
Victor Frost
Fengjun Li
Michael Vitevitch
Abstract
Given the high complexity and increasing traffic load of the current Internet, the geographically-correlated challenge caused by large-scale disasters or malicious attacks pose a significant threat to dependable network communications. To understand its characteristics, we start our research by first proposing a critical-region identification mechanism. Furthermore, the identified regions are incorporated into a new graph resilience metric, compensated Total Geographical Graph Diversity (cTGGD), which is capable of characterizing and differentiating resiliency levels for different topologies. We further propose the path geodiverse problem (PGD) that requires the calculation of a number of geographically disjoint paths, and two heuristics with less complexity compared to the optimal algorithm. We present two flow-diverse multi-commodity flow problems, a linear minimum-cost and a nonlinear delay-skew optimization problem to study the tradeoff among cost, end-to-end delay, and traffic skew on different geodiverse paths. We further prototype and integrate the solution from above models into our cross-layer resilient protocol stack, ResTP--GeoDivRP. Our protocol stack is implemented in the network simulator ns-3 and emulated in the KanREN testbed. By providing multiple geodiverse paths, our protocol stack provides better path protection than Multipath TCP (MPTCP) against geographically-correlated challenges. Finally, we analyze the mechanism attackers could utilize to maximize the attack impact and demonstrate the effectiveness of a network restoration plan.
HARSHITH POTU
Android Application for Interactive TeachingWhen & Where:
250 Nichols Hall
Committee Members:
Prasad Kulkarni, ChairEsam El-Araby
Andy Gill
Abstract
In a world with enormously growing technologies and applications, most people use smart
devices. This provides a means to develop smart applications that will be help students learn effectively.
In this project, we develop a smart android application which will provide digital means of
interaction between the professors and students. Instead of using traditional emails for every
discussion, this application helps to broadcast multiple messages to the class through a single
click. The students will also be able to follow multiple professors and participate in the active
discussions. And also this application allows the users to send personal messages to the other
users in order to participate in an active discussion. It provides unique logins to every student
and professor. It uses mongoDB as the database and "parse" backend as a service.The main
inspiration for this project was an application called Tophat.
ABDULMALIK HUMAYED
Security Protection for Smart Cars — A CPS PerspectiveWhen & Where:
246 Nichols Hall
Committee Members:
Bo Luo, ChairArvin Agah
Prasad Kulkarni
Heechul Yun
Prajna Dhar
Abstract
As the passenger vehicles evolve to be “smart”, electronic components, including communication, intelligent control and entertainment, are continuously introduced to new models and concept vehicles. The new paradigm introduces new features and benefits, but also brings new security issues, which is often overlooked in the industry as well as in the research community.
Smart cars are considered cyber-physical systems (CPS) because of their integration of cyber- and physical- components. In recent years, various threats, vulnerabilities, and attacks have been discovered from different models of smart cars. In the worst- case scenario, external attackers may remotely obtain full control of the vehicle by exploiting an existing vulnerability.
In this research, we investigate smart cars’ security from a CPS’ perspective and derive a taxonomy of threats, vulnerabilities, attacks, and controls. In addition, we investigate three security solutions that would improve the security posture of automotive networks. First, as automotive networks are highly vulnerable to Denial of Service (DoS) attacks, we investigate a solution that effectively mitigates such attacks, namely ID-Hopping. In addition, because several attacks have successfully exploited the poor separation between critical and non-critical components in the automotive networks, we propose to investigate the effectiveness of firewalls and Intrusion Detection Systems (IDS) to prevent and detect such exploitations. To evaluate our proposals, we built a test bench that is composed of five microcontrollers and a communication bus to simulate an automotive network. Simulations and experiments performed with the testbed demonstrates the effectiveness of ID-hopping against DoS attacks.
CAITLIN McCOLLISTER
Predicting Author Traits Through Topic Modeling of Multilingual Social Media TextWhen & Where:
246 Nichols Hall
Committee Members:
Bo Luo, ChairArvin Agah
Luke Huan
Abstract
One source of insight into the motivations of a modern human being is the text they write and post for public consumption online, in forms such as personal status updates, product reviews, or forum discussions. The task of inferring traits about an author based on their writing is often called "author profiling." One challenging aspect of author profiling in today’s world is the increasing diversity of natural languages represented on social media websites. Furthermore, the informal nature of such writing often inspires modifications to standard spelling and grammatical structure which are highly language-specific.
These are some of the dilemmas that inspired a series of so-called "shared task" competitions, in which many participants work to solve a single problem in different ways, in order to compare their methods and results. This thesis describes our submission to one author profiling shared task in which 22 teams implemented software to predict the age, gender, and certain personality traits of Twitter users based on the content of their posts to the website. We will also analyze the performance and implementation of our system compared to those of other teams, all of which were described in open-access reports.
The competition organizers provided a labeled training dataset of tweets in English, Spanish, Dutch, and Italian, and evaluated the submitted software on a similar but hidden dataset. Our approach is based on applying a topic modeling algorithm to an auxiliary, unlabeled but larger collection of tweets we collected in each language, and representing tweets from the competition dataset in terms of a vector of 100 topics. We then trained a random forest classifier based on the labeled training dataset to predict the age, gender and personality traits for authors of tweets in the test set. Our software ranked in the top half of participants in English and Italian, and the top third in Dutch.
ANIRUDH NARASIMMAN
Arcana: Private Tweets on a Public Microblog PlatformWhen & Where:
250 Nichols Hall
Committee Members:
Bo Luo, ChairLuke Huan
Prasad Kulkarni
Abstract
As one of the world’s most famous online social networks (OSN), Twitter now has 320 million monthly active users. Accompanying the large user group and abundant personal information, users increasingly realize the vulnerability of tweets and have reservations of showing certain tweets to different follower groups, such as colleagues, friends and other followers. However, Twitter does not offer enough privacy protection or access control functions. Users can just set an account as protected, which results in only the user’s followers seeing the tweet. The protected tweet does not appear in the public domain, third party sites and search engines cannot access the tweet. However, a protected account cannot distinguish between different follower groups or users who use multiple accounts. To serve the demand of the user so that they can restrict the access of each tweet to certain follower groups, we propose a browser plug-in system, which utilizes CP-ABE (Ciphertext Policy Attribute based encryption), allowing the user to select followers based on predefined attributes. Through simple installation and pre-setting, the user can encrypt and decrypt tweets conveniently and can avoid the fear of information leakage.
PRATHAP KUMAR VALSAN
Towards Achieving Predictable Memory Performance on Multi-core Based Mixed Criticality Embedded SystemsWhen & Where:
250 Nichols Hall
Committee Members:
Heechul Yun, ChairEsam El-Araby
Prasad Kulkarni
Abstract
The shared resources in multi-core systems, mainly the memory subsystem(caches and DRAM), if not managed properly would affect the predictability of real-time tasks in the presence of co-runners. In this work, we first studied the design of COTS DRAM controllers and its impact on predictability and, proposed a DRAM controller design, called MEDUSA, to provide predictable memory performance in multi-core based real-time systems. In our approach, the OS partially partitions DRAM banks into reserved banks and shared banks. The reserved banks are exclusive to each core to provide predictable timing while the shared banks are shared by all cores to efficiently utilize the resources. MEDUSA has two separate queues for read and write requests, and it prioritizes reads over writes. In processing read requests, MEDUSA employs a two-level scheduling algorithm that prioritizes the memory requests to the reserved banks in a Round Robin fashion to provide strong timing predictability. In processing write requests, MEDUSA largely relies on the FR-FCFS for high throughput. We implemented MEDUSA in a cycle-accurate full-system simulator. The results show that MEDUSA achieves up to 91% better worst-case performance for real-time tasks while achieving up to 29% throughput improvement for non-real-time tasks
Second, we studied the contention at shared caches and its impact on predictability. We demonstrate that the prevailing cache partition techniques does not necessarily ensure predictable cache performance in modern COTS multi-core platforms that use non-blocking caches to exploit memory-level-parallelism (MLP). Through carefully designed experiments using three real COTS multi-core platforms (four distinct CPU architectures) and a cycle-accurate full system simulator, we show that special hardware registers in non-blocking caches, known as Miss Status Holding Registers (MSHRs), which track the status of outstanding cache-misses, can be a significant source of contention. We propose a hardware and system software (OS) collaborative approach to efficiently eliminate MSHR contention for multi-core real-time systems.We implement the hardware extension in a cycle-accurate full-system simulator and the scheduler modification in Linux 3.14 kernel. In a case study, we achieve up to 19% WCET reduction (average: 13%) for a set of EEMBC benchmarks compared to a baseline cache partitioning setup.
LEI SHI
Multichannel Sense-and-Avoid Radar for Small UAVsWhen & Where:
2001B Eaton Hall
Committee Members:
Chris Allen, ChairGlenn Prescott
Jim Stiles
Heechul Yun
Lisa Friis
Abstract
This dissertation investigates the feasibility of creating a multichannel sense-and-avoid radar system for small fixed-wing unmanned aerial vehicles (UAVs, also known as sUAS or drones). These aircraft are projected to have a significant impact on the U.S. economy in both the commercial and government sectors, however, their lack of situation awareness has caused the FAA to strictly limit their use. Through this dissertation, a miniature, multichannel, FMCW radar system was created with a small enough size, weight, and power (SWaP) that would allow it to be mounted onboard a sUAS providing inflight target detection. The primary hazard to avoid are general aviation (GA) aircraft such as a Cessna 172 which was estimated to have a radar cross section (RCS) of approximately 1 sqr meter. The radar system is capable of locating potential hazards in range, Doppler, and 3-dimensional space using a patent pending 2-D FFT process and interferometry. The initial prototype system has a detection range of approximately 800 m, with 360-degree azimuth coverage, and +/- 15-degree elevation coverage and draws less than 20 W. From the radar data, target detection, tracking, and the extrapolation of the target behavior in 6-degree of freedom was demonstrated.