Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Jennifer Quirk

Aspects of Doppler-Tolerant Radar Waveforms

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Shannon Blunt, Chair
Patrick McCormick
Charles Mohr
James Stiles
Zsolt Talata

Abstract

The Doppler tolerance of a waveform refers to its behavior when subjected to a fast-time Doppler shift imposed by scattering that involves nonnegligible radial velocity. While previous efforts have established decision-based criteria that lead to a binary judgment of Doppler tolerant or intolerant, it is also useful to establish a measure of the degree of Doppler tolerance. The purpose in doing so is to establish a consistent standard, thereby permitting assessment across different parameterizations, as well as introducing a Doppler “quasi-tolerant” trade-space that can ultimately inform automated/cognitive waveform design in increasingly complex and dynamic radio frequency (RF) environments. 

Separately, the application of slow-time coding (STC) to the Doppler-tolerant linear FM (LFM) waveform has been examined for disambiguation of multiple range ambiguities. However, using STC with non-adaptive Doppler processing often results in high Doppler “cross-ambiguity” side lobes that can hinder range disambiguation despite the degree of separability imparted by STC. To enhance this separability, a gradient-based optimization of STC sequences is developed, and a “multi-range” (MR) modification to the reiterative super-resolution (RISR) approach that accounts for the distinct range interval structures from STC is examined. The efficacy of these approaches is demonstrated using open-air measurements. 

The proposed work to appear in the final dissertation focuses on the connection between Doppler tolerance and STC. The first proposal includes the development of a gradient-based optimization procedure to generate Doppler quasi-tolerant random FM (RFM) waveforms. Other proposals consider limitations of STC, particularly when processed with MR-RISR. The final proposal introduces an “intrapulse” modification of the STC/LFM structure to achieve enhanced sup pression of range-folded scattering in certain delay/Doppler regions while retaining a degree of Doppler tolerance.


Past Defense Notices

Dates

SUMIAH ALALWANI

Experiments on Incomplete Data Sets Using Modifications to Characteristic Relation

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Prasad Kulkarni
Bo Luo


Abstract

Rough set theory is a useful approach for decision rule induction, which is applied, to large life data sets. Lower and upper approximations of concepts values are used to induce rules for incomplete data sets. In our research we will study validity of modifications suggested to characteristic relation. We discuss the implementation of modifications to characteristic relation, and the local definability of each modified set. We show that all suggested modifications sets are not locally definable except for maximal consistent blocks that are restricted to data set with “do not care” conditions. A comparative analysis was conducted for characteristic sets and modifications in terms of cardinality of lower and upper approximations of each concept and decision rules induced by each modification. In this thesis, experiments were conducted on four incomplete data sets with lost and “do not care “ conditions. LEM2 algorithm was implemented to induce certain and possible rules form the incomplete data set. To measure the classification average error rate for induced rules, ten-fold cross validation was implemented. Our results show that there is no significant difference between the qualities of rule induced from each modification.


DANIEL GOMEZ GARCIA ALVESTEGUI

Ultra-Wideband Radar for High-Throughput-Phenotyping of Wheat Canopies

When & Where:


250 Nichols Hall

Committee Members:

Carl Leuschen, Chair
Chris Allen
Ron Hui
Fernando Rodriguez-Morales
David Braaten

Abstract

Increasing the rate of crop yield is an important issue to meet projected future crop production demands. Breeding efforts are being made to rapidly improve crop yields and make them more stress-resistance. Accelerated molecular breeding techniques, in which desirable plant physical traits are selected based on genetic markers, rely on accurate and rapid methods to link plant genotypes and phenotypes. Advances in next-generation-DNA sequencing have made genotyping a fast and efficient process. In contrast, methods for characterizing physical traits remain inefficient. 
The height of wheat crop is an important trait as it may be related to yield and biomass. It is also an indicator of plant growth-stage. Recent high-throughput-phenotyping experiments have used sensing techniques to measure canopy height based on ultrasound sonar and cameras. The main drawback of these methods is that the ground topography is not directly measured. 
In contrast to current sensors, ultra-wideband radars have the potential to take distance measurements to the top of the canopy and the ground simultaneously. We propose the study of ultra-wideband radar for measuring wheat crop heights. Specifically, we propose to study the effects of canopy constituents on the ranging radar-return or impulse-response, as well as on the frequency-response. First, a numerical simulator will be developed to accurately calculate the radar response at different canopy conditions. Second, a parametric study will be performed with aforementioned simulator. Lastly, an estimation algorithm for crop canopy heights will be developed, based on the parametric study. 


ALI ABUSHAIBA

Maximum Power Point Tracking for Photvoltaic Systems Using a Discreet in Time Extremum Seeking Algorithm

When & Where:


2001B Eaton Hall

Committee Members:

Reza Ahmadi, Chair
Ken Demarest
Glenn Prescott
Alessandro Salandrino
Huazhen Fang

Abstract

Energy harvesting from solar sources in an attempt to increase efficiency has sparked interest in many communities to develop more energy harvesting applications for renewable energy topics. Advanced technical methods are required to ensure the maximum available power is harnessed from the photovoltaic (PV) system. This work proposes a new discrete-in-time extremum-seeking based technique for tracking the maximum power point of a photovoltaic array. The proposed method is a true maximum power point tracker that can be implemented with reasonable processing effort on an expensive digital controller. The approach is to study the stability analysis of the proposed method to guarantee the convergence of the algorithm. The proposed method should exhibit better performance in comparison to conventional Maximum Power Point Tracking (MPPT) methods and require less computational effort than the complex mathematical methods. 


JAISNEET BHANDAL

Classification of Private Tweets using Tweets Content

When & Where:


2001B Eaton Hall

Committee Members:

Bo Luo, Chair
Jerzy Grzymala-Busse
Prasad Kulkarni


Abstract

Online social networks (OSNs) like Twitter provide an open platform for users to easily convey their thoughts and ideas from personal experiences to breaking news. With the increasing popularity of Twitter and the explosion of tweets, we have observed large amounts of potentially sensitive/private messages being published to OSNs inadvertently or voluntarily. The owners of these messages may become vulnerable to online stalkers or adversaries, and they often regret posting such messages. Therefore, identifying tweets that reveal private/sensitive information is critical for both the users and the service providers. However, the definition of sensitive information is subjective and different from person to person. To develop a privacy protection mechanism that is customizable to fit the needs of diverse audiences, it is essential to accurately and automatically identify and classify potentially sensitive tweets. 
In this project, we adopted a two-step approach - private tweet identification, and private tweet classification. We make the first attempt to classify private tweets into two main categories, sensitive and nonsensitive - private tweet identification, followed by private tweet classification where we categorize the sensitive tweets into 13 pre-defined topics. We consider private tweet identification and private tweet classification as dual-problems. Progress towards one of them will eventually benefit the other. We used a 2-layer classification approach, where we explore different combinations of classifiers, and analyze the performance of each combination. 


JONATHAN LYLE

A Digital Approach to Bistatic Radar Synchronization via GPS PPS

When & Where:


246 Nichols Hall

Committee Members:

Carl Leuschen, Chair
Chris Allen
Jilu Li


Abstract

Bistatic Radar systems utilize physically separate transmit and receive systems to collect information that monostatic systems cannot. One issue with developing bisatic systems is guaranteeing synchronization between the transmitters and receivers. This project presents a purely digital method for improving synchronization of a bistatic system based on the GPS PPS signal, and using step-time for both transmitter and receiver timing. The issue of bistatic synchronization is simulated in Matlab and then modified to utilize the proposed step-time adjustment to show that the method works in theory. This method is then implemented in hardware on the digital system of CReSIS’s ‘HF Sounder’ radar system, and then tested to verify that the proposed method can be implemented in hardware and that it improves performance.


TYLER WADE

AOT Vs. JIT: Impact of Profile Data on Code Quality

When & Where:


246 Nichols Hall

Committee Members:

Prasad Kulkarni, Chair
Perry Alexander
Heechul Yun


Abstract

Just-in-time (JIT) compilation during program execution and 
ahead-of-time (AOT) compilation during software installation are 
alternate techniques used by managed language virtual machines 
(VM) to generate optimized native code while simultaneously 
achieving binary code portability and high execution performance. 
JIT compilers typically collect profile information at run-time to 
enable profile-guided optimizations (PGO) to customize the gener- 
ated native code to different program inputs/behaviors. AOT com- 
pilation removes the speed and energy overhead of online profile 
collection and dynamic compilation, but may not be able to achieve 
the quality and performance of customized native code. The goal 
of this work is to investigate and quantify the implications of the 
AOT compilation model on the quality of the generated native code 
for current VMs. 
First, we quantify the quality of native code generated by the 
two compilation models for a state-of-the-art (HotSpot) Java VM. 
Second, we determine how the amount of profile data collected af- 
fects the quality of generated code. Third, we develop a mechanism 
to determine the accuracy or similarity of different profile data for a 
given program run, and investigate how the accuracy of profile data 
affects its ability to effectively guide PGOs. Finally, we categorize 
the profile data types in our VM and explore the contribution of 
each such category to performance. 


LOHITH NANUVALA

An Implementation of the MLEM2 Algorithm

When & Where:


1 Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Prasad Kulkarni
Richard Wang


Abstract

Data mining is the process of finding meaningful information from data. Data mining can be used in several areas like business, medicine, education etc. It allows us to find patterns in the data and make predictions for the future. One form of data mining is to extract rules from data sets. In this project we discuss an implementation of one of the data mining algorithms called MLEM2 (Modified Learning from Examples Module, version 2). This algorithm uses the concept of blocks of attribute-value pairs. It is also robust and generates rules for both complete and incomplete data sets with numeric and symbolic attributes. A rule checker has been developed which is used to evaluate the rule sets produced by MLEM2. The accuracy of the rules is measured by computing the error rate which is the ratio of the number of incorrectly classified cases to the total number of all cases. Experiments are conducted on different kinds of data sets (complete, incomplete, numeric and symbolic) using 10-fold cross validation method.


ASHWINI BALACHANDRA

Implementation of Truncated Lévy Walk Mobility Model in ns-3

When & Where:


246 Nichols Hall

Committee Members:

James Sterbenz, Chair
Victor Frost
Fengjun Li


Abstract

Mobility models generate the mobility patterns of the nodes in a given system. Mobility models help us to analyze and study the characteristic of new and existing systems. Various mobility models implemented in network simulation tools like ns-3 does not model the patterns of human mobility. The main idea of this project is to implement the truncated Lévy walk mobility model in ns-3. The model has two variations, in the first variation, the flight length and pause time of the nodes are determined from the truncated Pareto distribution and in the second variation, Lévy distribution models the flight length and pause time distributions and the values are obtained by Lévy α-stable random number generator. The mobility patterns of the nodes are generated and analyzed for the model by changing various model attributes. Further studies can be done to understand the behavior of these models for different ad hoc networking protocols.


PAVAN KUMAR MOTURU

Image Processing Techniques in Matlab GUI

When & Where:


246 Nichols Hall

Committee Members:

Carl Leuschen, Chair
Chris Allen
Fernando Rodriguez-Morales


Abstract

Identifying missing bed in radar data is very important in sea level changes. Increase in sea level is a problem of global importance because of its impact on infrastructure. Ice sheets in the Greenland and Antarctic are melting and increasing their contribution to sea level change over the last decade. Measuring ice sheets thickness is required to estimate sea level rise. We need to use several algorithms, pre-defined functions to extract the weak bed echoes, but we don’t have a tool in Matlab which contains some important algorithms like ImageJ. We can’t process all the data in ImageJ as Matlab produces better results compared to ImageJ as some of the functions like window and symmetric selection around center in FFT domain are not implemented in ImageJ. 
In this project, we will investigate the application of some image processing techniques using a GUI developed for analyzing ice sounding radargrams. One key advantage of the tool is that the image processing techniques are applied in a single GUI instead of doing separately. We apply these techniques on the data which came after applying extensive signal processing techniques. After performing these techniques, we compare the processed data with the original data. 


ASHWINI BALACHANDRA

Implementation of Truncated Lévy Walk Mobility Model in ns-3

When & Where:


246 Nichols Hall

Committee Members:

James Sterbenz, Chair
Victor Frost
Fengjun Li


Abstract

Mobility models generate the mobility patterns of the nodes in a given system. Mobility models help us to analyze and study the characteristic of new and existing systems. Various mobility models implemented in network simulation tools like ns-3 does not model the patterns of human mobility. The main idea of this project is to implement the truncated Lévy walk mobility model in ns-3. The model has two variations, in the first variation, the flight length and pause time of the nodes are determined from the truncated Pareto distribution and in the second variation, Lévy distribution models the flight length and pause time distributions and the values are obtained by Lévy α-stable random number generator. The mobility patterns of the nodes are generated and analyzed for the model by changing various model attributes. Further studies can be done to understand the behavior of these models for different ad hoc networking protocols.