Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Mahmudul Hasan

Assertion-Based Security Assessment of Hardware IP Protection Methods

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Tamzidul Hoque, Chair
Esam El-Araby
Sumaiya Shomaji


Abstract

Combinational and sequential locking methods are promising solutions for protecting hardware intellectual property (IP) from piracy, reverse engineering, and malicious modifications by locking the functionality of the IP based on a secret key. To improve their security, researchers are developing attack methods to extract the secret key.  

While the attacks on combinational locking are mostly inapplicable for sequential designs without access to the scan chain, the limited applicable attacks are generally evaluated against the basic random insertion of key gates. On the other hand, attacks on sequential locking techniques suffer from scalability issues and evaluation of improperly locked designs. Finally, while most attacks provide an approximately correct key, they do not indicate which specific key bits are undetermined. This thesis proposes an oracle-guided attack that applies to both combinational and sequential locking without scan chain access. The attack applies light-weight design modifications that represent the oracle using a finite state machine and applies an assertion-based query of the unlocking key. We have analyzed the effectiveness of our attack against 46 sequential designs locked with various classes of combinational locking including random, strong, logic cone-based, and anti-SAT based. We further evaluated against a sequential locking technique using 46 designs with various key sequence lengths and widths. Finally, we expand our framework to identify undetermined key bits, enabling complementary attacks on the smaller remaining key space.


Masoud Ghazikor

Distributed Optimization and Control Algorithms for UAV Networks in Unlicensed Spectrum Bands

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Victor Frost
Prasad Kulkarni


Abstract

UAVs have emerged as a transformative technology for various applications, including emergency services, delivery, and video streaming. Among these, video streaming services in areas with limited physical infrastructure, such as disaster-affected areas, play a crucial role in public safety. UAVs can be rapidly deployed in search and rescue operations to efficiently cover large areas and provide live video feeds, enabling quick decision-making and resource allocation strategies. However, ensuring reliable and robust UAV communication in such scenarios is challenging, particularly in unlicensed spectrum bands, where interference from other nodes is a significant concern. To address this issue, developing a distributed transmission control and video streaming is essential to maintaining a high quality of service, especially for UAV networks that rely on delay-sensitive data.

In this MSc thesis, we study the problem of distributed transmission control and video streaming optimization for UAVs operating in unlicensed spectrum bands. We develop a cross-layer framework that jointly considers three inter-dependent factors: (i) in-band interference introduced by ground-aerial nodes at the physical layer, (ii) limited-size queues with delay-constrained packet arrival at the MAC layer, and (iii) video encoding rate at the application layer. This framework is designed to optimize the average throughput and PSNR by adjusting fading thresholds and video encoding rates for an integrated aerial-ground network in unlicensed spectrum bands. Using consensus-based distributed algorithm and coordinate descent optimization, we develop two algorithms: (i) Distributed Transmission Control (DTC) that dynamically adjusts fading thresholds to maximize the average throughput by mitigating trade-offs between low-SINR transmission errors and queue packet losses, and (ii) Joint Distributed Video Transmission and Encoder Control (JDVT-EC) that optimally balances packet loss probabilities and video distortions by jointly adjusting fading thresholds and video encoding rates. Through extensive numerical analysis, we demonstrate the efficacy of the proposed algorithms under various scenarios.


Ganesh Nurukurti

Customer Behavior Analytics and Recommendation System for E-Commerce

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

In the era of digital commerce, personalized recommendations are pivotal for enhancing user experience and boosting engagement. This project presents a comprehensive recommendation system integrated into an e-commerce web application, designed using Flask and powered by collaborative filtering via Singular Value Decomposition (SVD). The system intelligently predicts and personalizes product suggestions for users based on implicit feedback such as purchases, cart additions, and search behavior.

 

The foundation of the recommendation engine is built on user-item interaction data, derived from the Brazilian e-commerce Olist dataset. Ratings are simulated using weighted scores for purchases and cart additions, reflecting varying degrees of user intent. These interactions are transformed into a user-product matrix and decomposed using SVD, yielding latent user and product features. The model leverages these latent factors to predict user interest in unseen products, enabling precise and scalable recommendation generation.

 

To further enhance personalization, the system incorporates real-time user activity. Recent search history is stored in an SQLite database and used to prioritize recommendations that align with the user’s current interests. A diversity constraint is also applied to avoid redundancy, limiting the number of recommended products per category.

 

The web application supports robust user authentication, product exploration by category, cart management, and checkout simulations. It features a visually driven interface with dynamic visualizations for product insights and user interactions. The home page adapts to individual preferences, showing tailored product recommendations and enabling users to explore categories and details.

 

In summary, this project demonstrates the practical implementation of a hybrid recommendation strategy combining matrix factorization with contextual user behavior. It showcases the importance of latent factor modeling, data preprocessing, and user-centric design in delivering an intelligent retail experience.


Srijanya Chetikaneni

Plant Disease Prediction Using Transfer Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Han Wang


Abstract

Timely detection of plant diseases is critical to safeguarding crop yields and ensuring global food security. This project presents a deep learning-based image classification system to identify plant diseases using the publicly available PlantVillage dataset. The core objective was to evaluate and compare the performance of a custom-built Convolutional Neural Network (CNN) with two widely used transfer learning models—EfficientNetB0 and MobileNetV3Small. 

All models were trained on augmented image data resized to 224×224 pixels, with preprocessing tailored to each architecture. The custom CNN used simple normalization, whereas EfficientNetB0 and MobileNetV3Small utilized their respective pre-processing methods to standardize the pretrained ImageNet domain inputs. To improve robustness, the training pipeline included data augmentation, class weighting, and early stopping.

Training was conducted using the Adam optimizer and categorical cross-entropy loss over 30 epochs, with performance assessed using accuracy, loss, and training time metrics. The results revealed that transfer learning models significantly outperformed the custom CNN. EfficientNetB0 achieved the highest accuracy, making it ideal for high-precision applications, while MobileNetV3Small offered a favorable balance between speed and accuracy, making it suitable for lightweight, real-time inference on edge devices.

This study validates the effectiveness of transfer learning for plant disease detection tasks and emphasizes the importance of model-specific preprocessing and training strategies. It provides a foundation for deploying intelligent plant health monitoring systems in practical agricultural environments.


Ahmet Soyyigit

Anytime Computing Techniques for LiDAR-based Perception In Cyber-Physical Systems

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Committee Members:

Heechul Yun, Chair
Michael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri

Abstract

The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advances in artificial intelligence (AI), particularly the introduction of deep neural networks (DNN), have significantly improved the autonomy of CPS, notably by boosting perception capabilities.

CPS perception aims to discern, classify, and track objects of interest in the operational environment, a task that is considerably challenging for computers in a three-dimensional (3D) space. For this task, the use of LiDAR sensors and processing their readings with DNNs has become popular because of their excellent performance However, in CPS such as self-driving cars and drones, object detection must be not only accurate but also timely, posing a challenge due to the high computational demand of LiDAR object detection DNNs. Satisfying this demand is particularly challenging for on-board computational platforms due to size, weight, and power constraints. Therefore, a trade-off between accuracy and latency must be made to ensure that both requirements are satisfied. Importantly, the required trade-off is operational environment dependent and should be weighted more on accuracy or latency dynamically at runtime. However, LiDAR object detection DNNs cannot dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). Prior research aimed at anytime computing for object detection DNNs using camera images is not applicable to LiDAR-based detection due to architectural differences. This thesis addresses these challenges by proposing three novel techniques: Anytime-LiDAR, which enables early termination with reasonable accuracy; VALO (Versatile Anytime LiDAR Object Detection), which implements deadline-aware input data scheduling; and MURAL (Multi-Resolution Anytime Framework for LiDAR Object Detection), which introduces dynamic resolution scaling. Together, these innovations enable LiDAR-based object detection DNNs to make effective trade-offs between latency and accuracy under varying operational conditions, advancing the practical deployment of LiDAR object detection DNNs.


Rahul Purswani

Finetuning Llama on custom data for QA tasks

When & Where:


Eaton Hall, Room 2001B

Committee Members:

David Johnson, Chair
Drew Davidson
Prasad Kulkarni


Abstract

Fine-tuning large language models (LLMs) for domain-specific use cases, such as question answering, offers valuable insights into how their performance can be tailored to specialized information needs. In this project, we focused on the University of Kansas (KU) as our target domain. We began by scraping structured and unstructured content from official KU webpages, covering a wide array of student-facing topics including campus resources, academic policies, and support services. From this content, we generated a diverse set of question-answer pairs to form a high-quality training dataset. LLaMA 3.2 was then fine-tuned on this dataset to improve its ability to answer KU-specific queries with greater relevance and accuracy. Our evaluation revealed mixed results—while the fine-tuned model outperformed the base model on most domain-specific questions, the original model still had an edge in handling ambiguous or out-of-scope prompts. These findings highlight the strengths and limitations of domain-specific fine-tuning, and provide practical takeaways for customizing LLMs for real-world QA applications.


Rithvij Pasupuleti

A Machine Learning Framework for Identifying Bioinformatics Tools and Database Names in Scientific Literature

When & Where:


LEEP2, Room 2133

Committee Members:

Cuncong Zhong, Chair
Dongjie Wang
Han Wang
Zijun Yao

Abstract

The absence of a single, comprehensive database or repository cataloging all bioinformatics databases and software creates a significant barrier for researchers aiming to construct computational workflows. These workflows, which often integrate 10–15 specialized tools for tasks such as sequence alignment, variant calling, functional annotation, and data visualization, require researchers to explore diverse scientific literature to identify relevant resources. This process demands substantial expertise to evaluate the suitability of each tool for specific biological analyses, alongside considerable time to understand their applicability, compatibility, and implementation within a cohesive pipeline. The lack of a central, updated source leads to inefficiencies and the risk of using outdated tools, which can affect research quality and reproducibility. Consequently, there is a critical need for an automated, accurate tool to identify bioinformatics databases and software mentions directly from scientific texts, streamlining workflow development and enhancing research productivity. 

 

The bioNerDS system, a prior effort to address this challenge, uses a rule-based named entity recognition (NER) approach, achieving an F1 score of 63% on an evaluation set of 25 articles from BMC Bioinformatics and PLoS Computational Biology. By integrating the same set of features such as context patterns, word characteristics and dictionary matches into a machine learning model, we developed an approach using an XGBoost classifier. This model, carefully tuned to address the extreme class imbalance inherent in NER tasks through synthetic oversampling and refined via systematic hyperparameter optimization to balance precision and recall, excels at capturing complex linguistic patterns and non-linear relationships, ensuring robust generalization. It achieves an F1 score of 82% on the same evaluation set, significantly surpassing the baseline. By combining rule-based precision with machine learning adaptability, this approach enhances accuracy, reduces ambiguities, and provides a robust tool for large-scale bioinformatics resource identification, facilitating efficient workflow construction. Furthermore, this methodology holds potential for extension to other technological domains, enabling similar resource identification in fields like data science, artificial intelligence, or computational engineering.


Vishnu Chowdary Madhavarapu

Automated Weather Classification Using Transfer Learning

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents an automated weather classification system utilizing transfer learning with pre-trained convolutional neural networks (CNNs) such as VGG19, InceptionV3, and ResNet50. Designed to classify weather conditions—sunny, cloudy, rainy, and sunrise—from images, the system addresses the challenge of limited labeled data by applying data augmentation techniques like zoom, shear, and flip, expanding the dataset images. By fine-tuning the final layers of pre-trained models, the solution achieves high accuracy while significantly reducing training time. VGG19 was selected as the baseline model for its simplicity, strong feature extraction capabilities, and widespread applicability in transfer learning scenarios. The system was trained using the Adam optimizer and evaluated on key performance metrics including accuracy, precision, recall, and F1 score. To enhance user accessibility, a Flask-based web interface was developed, allowing real-time image uploads and instant weather classification. The results demonstrate that transfer learning, combined with robust data preprocessing and fine-tuning, can produce a lightweight and accurate weather classification tool. This project contributes toward scalable, real-time weather recognition systems that can integrate into IoT applications, smart agriculture, and environmental monitoring.


RokunuzJahan Rudro

Using Machine Learning to Classify Driver Behavior from Psychological Features: An Exploratory Study

When & Where:


Eaton Hall, Room 1A

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Zijun Yao
Alexandra Kondyli

Abstract

Driver inattention and human error are the primary causes of traffic crashes. However, little is known about the relationship between driver aggressiveness and safety. Although several studies that group drivers into different classes based on their driving performance have been conducted, little has been done to explore how behavioral traits are linked to driver behavior. The study aims to link different driver profiles, assessed through psychological evaluations, with their likelihood of engaging in risky driving behaviors, as measured in a driving simulation experiment. By incorporating psychological factors into machine learning algorithms, our models were able to successfully relate self-reported decision-making and personality characteristics with actual driving actions. Our results hold promise toward refining existing models of driver behavior  by understanding the psychological and behavioral characteristics that influence the risk of crashes.


Md Mashfiq Rizvee

Energy Optimization in Multitask Neural Networks through Layer Sharing

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Han Wang


Abstract

Artificial Intelligence (AI) is being widely used in diverse domains such as industrial automation, traffic control, precision agriculture, and smart cities for major heavy lifting in terms of data analysis and decision making. However, the AI life- cycle is a major source of greenhouse gas (GHG) emission leading to devastating environmental impact. This is due to expensive neural architecture searches, training of countless number of models per day across the world, in-field AI processing of data in billions of edge devices, and advanced security measures across the AI life cycle. Modern applications often involve multitasking, which involves performing a variety of analyzes on the same dataset. These tasks are usually executed on resource-limited edge devices, necessitating AI models that exhibit efficiency across various measures such as power consumption, frame rate, and model size. To address these challenges, we introduce a novel neural network architecture model that incorporates a layer sharing principle to optimize the power usage. We propose a novel neural architecture, Layer Shared Neural Networks that merges multiple similar AI/NN tasks together (with shared layers) towards creating a single AI/NN model with reduced energy requirements and carbon footprint. The experimental findings reveal competitive accuracy and reduced power consumption. The layer shared model significantly reduces power consumption by 50% during training and 59.10% during inference causing as much as an 84.64% and 87.10% decrease in CO2 emissions respectively. 

  


Fairuz Shadmani Shishir

Parameter-Efficient Computational Drug Discovery using Deep Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Hongyang Sun


Abstract

The accurate prediction of small molecule binding affinity and toxicity remains a central challenge in drug discovery, with significant implications for reducing development costs, improving candidate prioritization, and enhancing safety profiles. Traditional computational approaches, such as molecular docking and quantitative structure-activity relationship (QSAR) models, often rely on handcrafted features and require extensive domain knowledge, which can limit scalability and generalization to novel chemical scaffolds. Recent advances in language models (LMs), particularly those adapted to chemical representations such as SMILES (Simplified Molecular Input Line Entry System), have opened new ways for learning data-driven molecular representations that capture complex structural and functional properties. However, achieving both high binding affinity and low toxicity through a resource-efficient computational pipeline is inherently difficult due to the multi-objective nature of the task. This study presents a novel dual-paradigm approach to critical challenges in drug discovery: predicting small molecules with high binding affinity and low cardiotoxicity profiles. For binding affinity prediction, we implement a specialized graph neural network (GNN) architecture that operates directly on molecular structures represented as graphs, where atoms serve as nodes and bonds as edges. This topology-aware approach enables the model to capture complex spatial arrangements and electronic interactions critical for protein-ligand binding. For toxicity prediction, we leverage chemical language models (CLMs) fine-tuned with Low-Rank Adaptation (LoRA), allowing efficient adaptation of large pre-trained models to specialized toxicological endpoints while maintaining the generalized chemical knowledge embedded in the base model. Our hybrid methodology demonstrates significant improvements over existing computational approaches, with the GNN component achieving an average area under the ROC curve (AUROC) of 0.92 on three protein targets and the LoRA-adapted CLM reaching (AUROC) of 0.90 with 60% reduction in parameter usage in predicting cardiotoxicity. This work establishes a powerful computational framework that accelerates drug discovery by enabling both higher binding affinity and low toxicity compounds with optimized efficacy and safety profiles. 


Soma Pal

Truths about compiler optimization for state-of-the-art (SOTA) C/C++ compilers

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Prasad Kulkarni, Chair
Esam El-Araby
Drew Davidson
Tamzidul Hoque
Jiang Yunfeng

Abstract

Compiler optimizations are critical for performance and have been extensively studied, especially for C/C++ language compilers. Our overall goal in this thesis is to investigate and compare the properties and behavior of optimization passes across multiple contemporary, state-of-the-art (SOTA)  C/C++ compilers to understand if they adopt similar optimization implementation and orchestration strategies. Given the maturity of pre-existing knowledge in the field, it seems conceivable that different compiler teams will adopt consistent optimization passes, pipeline and application techniques. However, our preliminary results indicate that such expectation may be misguided. If so, then we will attempt to understand the differences, and study and quantify their impact on the performance of generated code.

In our first work, we study and compare the behavior of profile-guided optimizations (PGO) in two popular SOTA C/C++ compilers, GCC and Clang. This study reveals many interesting, and several counter-intuitive, properties about PGOs in C/C++ compilers. The behavior and benefits of PGOs also vary significantly across our selected compilers. We present our observations, along with plans to further explore these inconsistencies in this report. Likewise, we have also measured noticeable differences in the performance delivered by optimizations across our compilers. We propose to explore and understand these differences in this work. We present further details regarding our proposed directions and planned experiments in this report. We hope that this work will show and suggest opportunities for compilers to learn from each other and motivate researchers to find mechanisms to combine the benefits of multiple compilers to deliver higher overall program performance.


Nyamtulla Shaik

AI Vision to Care: A QuadView of Deep Learning for Detecting Harmful Stimming in Autism

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Sumaiya Shomaji, Chair
Bo Luo
Dongjie Wang


Abstract

Stimming refers to repetitive actions or behaviors used to regulate sensory input or express feelings. Children with developmental disorders like autism (ASD) frequently perform stimming. This includes arm flapping, head banging, finger flicking, spinning, etc. This is exhibited by 80-90% of children with Autism, which is seen in 1 among 36 children in the US. Head banging is one of these self-stimulatory habits that can be harmful. If these behaviors are automatically identified and notified using live video monitoring, parents and other caregivers can better watch over and assist children with ASD.
Classifying these actions is important to recognize harmful stimming, so this study focuses on developing a deep learning-based approach for stimming action recognition. We implemented and evaluated four models leveraging three deep learning architectures based on Convolutional Neural Networks (CNNs), Autoencoders, and Vision Transformers. For the first time in this area, we use skeletal joints extracted from video sequences. Previous works relied solely on raw RGB videos, vulnerable to lighting and environmental changes. This research explores Deep Learning based skeletal action recognition and data processing techniques for a small unstructured dataset that consists of 89 home recorded videos collected from publicly available sources like YouTube. Our robust data cleaning and pre-processing techniques helped the integration of skeletal data in stimming action recognition, which performed better than state-of-the-art with a classification accuracy of up to 87%
In addition to using traditional deep learning models like CNNs for action recognition, this study is among the first to apply data-hungry models like Vision Transformers (ViTs) and Autoencoders for stimming action recognition on the dataset. The results prove that using skeletal data reduces the processing time and significantly improves action recognition, promising a real-time approach for video monitoring applications. This research advances the development of automated systems that can assist caregivers in more efficiently tracking stimming activities.


Alexander Rodolfo Lara

Creating a Faradaic Efficiency Graph Dataset Using Machine Learning

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Zijun Yao, Chair
Sumaiya Shomaji
Kevin Leonard


Abstract

Just as the internet-of-things leverages machine learning over a vast amount of data produced by an innumerable number of sensors, the Internet of Catalysis program uses similar strategies with catalysis research. One application of the Internet of Catalysis strategy is treating research papers as datapoints, rich with text, figures, and tables. Prior research within the program focused on machine learning models applied strictly over text.

This project is the first step of the program in creating a machine learning model from the images of catalysis research papers. Specifically, this project creates a dataset of faradaic efficiency graphs using transfer learning from pretrained models. The project utilizes FasterRCNN_ResNet50_FPN, LayoutLMv3SequenceClassification, and computer vision techniques to recognize figures, extract all graphs, then classify the faradaic efficiency graphs.

Downstream of this project, researchers will create a graph reading model to integrate with large language models. This could potentially lead to a multimodal model capable of fully learning from images, tables, and texts of catalysis research papers. Such a model could then guide experimentation on reaction conditions, catalysts, and production.


Amin Shojaei

Scalable and Cooperative Multi-Agent Reinforcement Learning for Networked Cyber-Physical Systems: Applications in Smart Grids

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Prasad Kulkarni
Taejoon Kim
Shawn Keshmiri

Abstract

Significant advances in information and networking technologies have transformed Cyber-Physical Systems (CPS) into networked cyber-physical systems (NCPS). A noteworthy example of such systems is smart grid networks, which include distributed energy resources (DERs), renewable generation, and the widespread adoption of Electric Vehicles (EVs). Such complex NCPS require intelligent and autonomous control solutions. For example, the increasing number of EVs introduces significant sources of demand and user behavior uncertainty that can jeopardize grid stability during peak hours. Traditional model-based demand-supply controls fail to accurately model and capture the complex nature of smart grid systems in the presence of different uncertainties and as the system size grows. To address these challenges, data-driven approaches have emerged as an effective solution for informed decision-making, predictive modeling, and adaptive control to enhance the resiliency of NCPS in uncertain environments.

As a powerful data-driven approach, Multi-Agent Reinforcement Learning (MARL) enables agents to learn and adapt in dynamic and uncertain environments. However, MARL techniques introduce complexities related to communication, coordination, and synchronization among agents. In this PhD research, we investigate autonomous control for smart grid decision networks using MARL. First, we examine the issue of imperfect state information, which frequently arises due to the inherent uncertainties and limitations in observing the system state.

Second, we focus on the cooperative behavior of agents in distributed MARL frameworks, particularly under the central training with decentralized execution (CTDE) paradigm. We provide theoretical results and variance analysis for stochastic and deterministic cooperative MARL algorithms, including Multi-Agent Deep Deterministic Policy Gradient (MADDPG), Multi-Agent Proximal Policy Optimization (MAPPO), and Dueling MAPPO. These analyses highlight how coordinated learning can improve system-wide decision-making in uncertain and dynamic environments like EV networks.

Third, we address the scalability challenge in large-scale NCPS by introducing a hierarchical MARL framework based on a cluster-based architecture. This framework organizes agents into coordinated subgroups, improving scalability while preserving local coordination. We conduct a detailed variance analysis of this approach to demonstrate its effectiveness in reducing communication overhead and learning complexity. This analysis establishes a theoretical foundation for scalable and efficient control in large-scale smart grid applications.


Asrith Gudivada

Custom CNN for Object State Classification in Robotic Cooking

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

David Johnson, Chair
Prasad Kulkarni
Dongjie Wang


Abstract

This project presents the development of a custom Convolutional Neural Network (CNN) designed to classify object states—such as sliced, diced, or peeled—in cooking environments. Recognizing fine-grained object states is essential for context-aware manipulation but remains challenging due to visual similarity between states and a limited dataset. To address these challenges, I built a lightweight CNN from scratch, deliberately avoiding pretrained models to maintain domain specificity and efficiency. The model was enhanced through data augmentation and optimized dropout layers, with additional experiments incorporating batch normalization, Inception modules, and residual connections. While these advanced techniques offered incremental improvements during experimentation, the final model—a combination of data augmentation, dropout, and batch normalization—achieved ~60% validation accuracy and demonstrated stable generalization. This work highlights the trade-offs between model complexity and performance in constrained environments and contributes toward real-time state recognition with potential applications in assistive technologies.


Past Defense Notices

Dates

PATRICK McCORMICK

Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Emissions

When & Where:


129 Nichols Hall

Committee Members:

Shannon Blunt, Chair
Chris Allen
Alessandro Salandrino
Jim Stiles
Emily Arnold*

Abstract

With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode.

In this work, two spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms. The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result.

The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform


MATT KITCHEN

Blood Phantom Concentration Measurement Using An I-Q Receiver Design

When & Where:


250 Nichols Hall

Committee Members:

Ron Hui, Chair
Chris Allen
Jim Stiles


Abstract

Near-infrared spectroscopy has been used as a non-invasive method of determining concentration of chemicals within living tissues of living organisms.  This method employs LEDs of specific frequencies to measure concentration of blood constituents according to the Beer-Lambert Law.  One group of instruments (frequency domain instruments) is based on amplitude modulation of the laser diode or LED light intensity, the measurement of light adsorption and the measurement of modulation phase shift to determine light path length for use in Beer-Lambert Law. This paper describes the design and demonstration of a frequency domain instrument for measuring concentration of oxygenated and de-oxygenated hemoglobin using incoherent optics and an in-phase quadrature (I-Q) receiver design.  The design has been shown to be capable of resolving variations of concentration of test samples and a viable prototype for future, more precise, tools.

 


LIANYU LI

Wireless Power Transfer

When & Where:


250 Nichols Hall

Committee Members:

Alessandro Salandrino, Chair
Reza Ahmadi
Ron Hui


Abstract

Wireless Power Transfer is commonly known as that electrical energy transfer from source to load in some certain distance without any wire connecting in between. It has been almost two hundred when people first noticed the electromagnetic induction phenomenon. After that, Nikola Tesla tried to use this concept to build the first wireless power transfer device. Today, the most common technic is used for transfer power wirelessly is known as inductive coupling. It has revolutionized the transmission of power in various application.  Wireless power transfer is one of the simplest and inexpensive way to transfer energy, and it will change the behavior of how people are going to use their devices.

With the development of science and technology. A new method of wireless power transfer through the coupled magnetic resonances could be the next technology that bring the future nearer. It significantly increases the transmission distance and efficiency. This project shows that this is very simple way to charge the low power devices wirelessly by using coupled magnetic resonances. It also presents how easy to set up the system compare to the conventional copper cables and current carrying wire.


TONG XU

Real-Time DSP Enabled Multi-Carrier Cross-Connect for Optical Systems

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Chris Allen
Esam El-Araby
Erik Perrins
Hui Zhao*

Abstract

Owning to the ever-increasing data traffic in today’s optical network, how to utilize the optical bandwidth more efficiently has become a critical issue. Optical wavelength division multiplexing (WDM) multiplexes multiple optical carrier signals into a single fiber by using different wavelengths of laser light. Optical cross-connect (OXC) and switches based on optical WDM can greatly improves the performance of optical networks, which results in reduced complexity, signal transparency, and significant electrical energy saving. However, OXC alone cannot fully exploit the availability of optical bandwidth due to its coarse bandwidth granularity imposed by optical filtering. Thus, OXC may not meet the requirements of some applications when the sub-band has a small bandwidth. In order to achieve smaller bandwidth granularities, electrical digital cross-connect (DXC) could be added to the current optical network.

In this work, we proposed a scheme of real-time digital signal processing (DSP) enabled multi-carrier cross-connect which can dynamically assign bandwidth and allocates power to each individual subcarrier channel. This cross-connect is based on digital sub-carrier multiplexing (DSCM), which is a frequency division multiplexing (FDM) technique. Either Nyquist WDM (N-WDM) or orthogonal frequency division multiplexing (OFDM) can be used to implement real-time enabled DSCM. DSCM multiplexes the digital created subcarriers on each optical wavelength. Compared with optical WDM, DSCM has a smaller bandwidth granularity because it multiplexes sub-carriers in electrical domain. DSCM also provides more flexibility since operations such as distortion compensation and signal regeneration could be conducted by using DSP algorithms.

We built a real-time DSP platform based on a Virtex7 FPGA, which allows the test of real-time DSP algorithms for multi-carrier cross-connect in optical systems. We have implemented a real-time DSP enabled multi-carrier cross-connect based on up/down sampling and filtering. This technique can save the DSP resources since local oscillators (LO) are not needed in spectral translation. We got some preliminary results from theoretical analysis, simulation and experiment. The performance and resource cost of this cross-connect has been analyzed. This real-time DSP enabled cross-connect also has the potential to reduce the cost in applications such as the mobile Fronthaul in 5G next-generation wireless networks.

 


RAHUL KAKANI

Discretization Based on Entropy and Multiple Scanning

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Man Kong
Prasad Kulkarni


Abstract

Enormous amount of data is being generated due to advancement in technology. The basic question of discovering knowledge from the data generated is still pertinent. Data mining guides us in discovering patterns or rules. Rules are frequently identified by a technique known as rule induction, which is regarded as the benchmark technique in data mining primarily developed to handle symbolic data. Real life data often consists of numerical attributes and hence, in order to completely utilize the power of rule induction, a form of preprocessing step is involved which converts numeric data into symbolic data known as discretization.

We present two entropy-based discretization techniques known as dominant attribute and multiple scanning approach, respectively. These approaches were implemented as two explicit algorithms in C# programming language and applied on nine well known numerical data sets. For every dataset in multiple scanning approach, experiment was repeated with incremental scans until interval counts were stable. Preliminary results suggest that multiple scanning approach performs better than dominant attribute approach in terms of producing comparatively smaller and simpler error rate.

 


SHADI PIR HOSSEINLOO

Supervised Speech Separation Based on Deep Neural Network

When & Where:


317 Nichols Hall

Committee Members:

Shannon Blunt, Chair
Jonathan Brumbergm Co-Chair
Erik Perrins
Dave Petr
John Hansen

Abstract

In real world environments, the speech signals received by our ears are usually a combination of different sounds that include not only the target speech, but also acoustic interference like music, background noise, and competing speakers. This interference has negative effect on speech perception and degrades the performance of speech processing applications such as automatic speech recognition (ASR), and hearing aid devices. One way to solve this problem is using source separation algorithms to separate the desired speech from the interfering sounds. Many source separation algorithms have been proposed to improve the performance of ASR systems and hearing aid devices, but it is still challenging for these systems to work efficiently in noisy and reverberant environments. On the other hand, humans have a remarkable ability to separate desired sounds and listen to a specific talker among noise and other talkers. Inspired by the capabilities of human auditory system, a popular method known as auditory scene analysis (ASA) was proposed to separate different sources in a two stage process of segmentation and grouping. The main goal of source separation in ASA is to estimate time frequency masks that optimally match and separate noise signals from a mixture of speech and noise. Three major aims are proposed to improve upon source separation in noisy and reverberant acoustic signals. First, a simple and novel algorithm is proposed to increase the discriminability between two sound sources by magnifying the head-related transfer function of the interfering source. Experimental results show a significant increase in the quality of the recovered target speech. Second, a time frequency masking-based source separation algorithm is proposed that can separate a male speaker from a female speaker in reverberant conditions by using the spatial cues of the sources. Furthermore, the proposed algorithm also has the ability to preserve the location of the sources after separation.

Finally, a supervised speech separation algorithm is proposed based on deep neural networks to estimate the time frequency masks. Initial experiments show promising results for separating sources in noisy and reverberant condition. Continued work is focused on identifying the best network training features and network structure that are robust to different types of noise, speakers, and reverberation. The main goal of the proposed algorithm is to increase the intelligibility and quality of the recovered speech from noisy environments, which has the potential to improve both speech processing applications and signal processing strategies for hearing aid technology.


CHENG GAO

Mining Incomplete Numerical Data Sets

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Bo Luo
Richard Wang
Tyrone Duncan
Xuemin Tu*

Abstract

Incomplete and numerical data are common for many application domains. There have been many approaches to handle missing data in statistical analysis and data mining. To deal with numerical data, discretization is crucial for many machine learning algorithms. However, few work has been done for discretization on incomplete data.

This research mainly focuses on the question whether conducting discretization as preprocessing gives better results than using a data mining method alone. Multiple Scanning is an entropy based discretization method. Previous research shown that it outperforms commonly used discretization methods: Equal Width or Equal Frequency discretization. In this work, Multiple Scanning is tested on C4.5 and MLEM2 on in- complete numerical data sets. Results show for some data sets, the setup utilizing Multiple Scanning as preprocessing performs better, for the other data sets, C4.5 or MLEM2 should be used by themselves. Our secondary objective is to test which of the three known interpretations of missing attribute value is better when using MLEM2. Results show that running MLEM2 on data sets with attribute-concept values performs worse than the other two types of missing values. Last, we compared error rate be- tween C4.5 combined with Multiple Scanning (MS-C4.5) and MLEM2 combined with Multiple Scanning (MS-MLEM2) on data sets with different percentage of missing at- tribute values. Possible rules induced by MS-MLEM2 give a better result on data sets with "do-not-care" conditions. MS-C4.5 is preferred on data sets with lost values and attribute-concept values.

Our conclusion is that there are no universal optimal solutions for all data sets. Setup should be custom-made based on the data sets.

 


GOVIND VEDALA

Digital Compensation of Transmission Impairments in Multicarrier Fiber Optic Systems

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Chris Allen
Erik Perrins
Alessandro Salandrino
Carey Johnson*

Abstract

Time and again, fiber optic medium has proved to be the best means for transporting global data traffic which is following an exponential growth trajectory. High bandwidth applications based on cloud, virtual reality and big data, necessitates maximum effective utilization of available fiber bandwidth. To this end, multicarrier superchannel transmission systems, aided by robust digital signal processing both at transmitter and receiver, have proved to enhance spectral efficiency and achieve multi tera-bit per second data rates.

With respect to transmission sources, laser technology too has made significant strides, especially in the domain of multiwavelength sources such as quantum dot passive mode-locked laser (QD-PMLL) based optical frequency combs. In the present research work, we characterize the phase dynamics of comb lines from a QD-PMLL based on a novel multiheterodyne coherent detection technique. The inherently broad linewidth of comb lines which is in the order of tens of MHz, make it difficult for conventional digital phase noise compensation algorithms to track the large phase noise especially for low baud rate subcarriers using higher cardinality modulation formats. In the context of multi-subcarrier Nyquist pulse shaped superchannel transmission system with coherent detection, we demonstrate through measurements, an efficient phase noise compensation technique called “Digital Mixing” which exploits the mutual phase coherence among the comb lines. For QPSK and 16 QAM modulation formats, digital mixing provided significant improvement in bit error rate (BER) performance.  For short reach data center and passive optical network-based applications, which adopt direct detection, a single optical amplifier is generally used meet the power budget requirements to achieve the desired BER.  Semiconductor Optical Amplifier (SOA) with its small form factor, is a low-cost power booster that can be designed to operate in any desired wavelength and most importantly can be integrated with the transmitter. However, saturated SOAs introduce nonlinear distortions on the amplified signal. Alongside SOA, the photodiode also introduces nonlinear mixing in the form of Signal-Signal Beat Interference (SSBI). In this research, we study the impact of SOA nonlinearity on the effectiveness of SSBI compensation in a direct detection OFDM based transmission system. We experimentally demonstrate a digital compensation technique to undo the SOA nonlinearity effect by digitally back-propagating the received signal through a virtual SOA, thereby effectively eliminating the SSBI. ​


VENKAT ANIRUDH YERRAPRAGADA

Comparison of Minimum Cost Perfect Matching Algorithms in solving the Chinese Postman Problem

When & Where:


2001B Eaton Hall

Committee Members:

Man Kong, Chair
Perry Alexander
Jerzy Grzymala-Busse


Abstract

The Chinese Postman Problem also known as Route Inspection Problem is a famous arc routing problem in Graph theory. In this problem, a postman has to deliver mail to the streets such that all the streets are visited at least once and return to his starting point. The problem is to find out a path called the optimal postman tour such that the distance travelled by the postman by following this path is always the minimum distance that has to be travelled to visit all the streets at least once. In graph theory, we represent the street system as a weighted graph whose edges represent the streets and the street intersections are represented by the vertices. A graph can be directed, undirected or a mixed graph. Directed and undirected edges represent the one way and the two way streets respectively. A mixed graph has both the directed and undirected edges.

The Chinese postman problem can be divided into several sub problems of which finding the minimum cost perfect matching is the critical part. For a directed graph, the minimum cost perfect matching of a bipartite graph has to be computed. For an undirected graph, the minimum cost perfect matching of a general graph has to be computed. There are different matching algorithms to compute the minimum cost perfect matching efficiently. In this project, I have understood and implemented four different matching algorithms used in computing an optimal postman tour, the Edmond’s Blossom Algorithm and a Branch and Bound Algorithm for the directed graph and the Hungarian Algorithm and a Branch and Bound Algorithm for the undirected graph. The objective of this project is to compare the performance of these matching algorithms on graphs of different sizes and densities."


SRI MOUNICA MOTIPALLI

Analysis of Privacy Protection Mechanisms in Social Networks using the Social Circle Model

When & Where:


2001B Eaton Hall

Committee Members:

Bo Luo, Chair
Perry Alexander
Jerzy Grzymala-Busse


Abstract

Many online social networks are increasingly being used as information sharing platforms. With a massive increase in the number of users participating in information sharing, an enormous amount of information becomes available on such sites. It is vital to preserve user’s privacy, without preventing them from socialization. Unfortunately, many existing models overlooked a very important fact, that is, a user may want different information boundary preference for different information. To address this short coming, in this paper, I will introduce a ‘social circle’ model, which follows the concepts of ‘private information boundaries’ and ‘restricted access and limited control’. While facilitating socialization, the social circle model also provides some privacy protection capabilities. I then utilize this model to analyze the most popular social networks (such as Facebook, Google+, VKontakte, Flickr, and Instagram) and demonstrate the potential privacy vulnerabilities in some of these networking sites. Lastly, I discuss the implication of the analysis and possible future directions.