Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Alfred Fontes

Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope Modulations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.

A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal. 

The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.


Arin Dutta

Performance Analysis of Distributed Raman Amplification with Different Pumping Configurations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rongqing Hui, Chair
Morteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao

Abstract

As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.

Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.

The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.

As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research  is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.


Audrey Mockenhaupt

Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target Recognition

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jon Owen


Abstract

Pending.


Rich Simeon

Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Erik Perrins, Chair
Shannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin

Abstract

The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.

A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.

Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.


Mohammad Ful Hossain Seikh

AAFIYA: Antenna Analysis in Frequency-domain for Impedance and Yield Assessment

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Jim Stiles, Chair
Rachel Jarvis
Alessandro Salandrino


Abstract

This project presents AAFIYA (Antenna Analysis in Frequency-domain for Impedance and Yield Assessment), a modular Python toolkit developed to automate and streamline the characterization and analysis of radiofrequency (RF) antennas using both measurement and simulation data. Motivated by the need for reproducible, flexible, and publication-ready workflows in modern antenna research, AAFIYA provides comprehensive support for all major antenna metrics, including S-parameters, impedance, gain and beam patterns, polarization purity, and calibration-based yield estimation. The toolkit features robust data ingestion from standard formats (such as Touchstone files and beam pattern text files), vectorized computation of RF metrics, and high-quality plotting utilities suitable for scientific publication.

Validation was carried out using measurements from industry-standard electromagnetic anechoic chamber setups involving both Log Periodic Dipole Array (LPDA) reference antennas and Askaryan Radio Array (ARA) Bottom Vertically Polarized (BVPol) antennas, covering a frequency range of 50–1500 MHz. Key performance metrics, such as broadband impedance matching, S11 and S21 related calculations, 3D realized gain patterns, vector effective lengths,  and cross-polarization ratio, were extracted and compared against full-wave electromagnetic simulations (using HFSS and WIPL-D). The results demonstrate close agreement between measurement and simulation, confirming the reliability of the workflow and calibration methodology.

AAFIYA’s open-source, extensible design enables rapid adaptation to new experiments and provides a foundation for future integration with machine learning and evolutionary optimization algorithms. This work not only delivers a validated toolkit for antenna research and pedagogy but also sets the stage for next-generation approaches in automated antenna design, optimization, and performance analysis.


Past Defense Notices

Dates

RAMESH KUMAR DUGAR

Pulsed Doppler Lidar for Velocity Measurement using Coherent Detection

When & Where:


250 Nichols Hall

Committee Members:

Ron Hui, Chair
Glenn Prescott
Jim Stiles


Abstract

Measurement of wind velocity is of essential to enhance the wind energy utilization which is very important considering the fact that it one of most important renewable source of energy and LIDAR (Light Detection and Ranging) has become a very popular technology for such measurements. In this study, a pulsed Doppler Lidar operating at 1.5µm is demonstrated with coherent detection technique for measurement of velocity of spinning disc which is a hard target used in this project. This Lidar uses the principle of Doppler shift to measure the velocity and an Acousto-optic modulator is used for frequency shifting in the transmitter to produce an intermediate frequency. A data acquisition board (DAQ) was used to generate the pulses and also to process the data once it was collected by the receiver using mat lab. A graphical user interface was used to interface the DAQ with the system and changing parameters like PRF, pulse width, record directory etc. could be changed directly from the computer. A thorough study of literature has been done and same has been presented. The architecture of the Lidar, velocity results, future work and an analysis of SNR’s dependence on range and pulse energy under predefined atmospheric conditions will be discussed.


SREE HARSHA KAKARLA

Design of Transmitter and SMPS for Blood Oxygen Level Tomography

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Chris Allen
James Stiles


Abstract

Ever since the invention of near infrared optical spectroscopy almost three decades ago, research has still been going actively to improve the accuracy of biological tissue oxygenation measurements and make it commercially available in clinics for medical diagnosis and imaging. Hemoglobin concentration in blood especially near brain can be found by determining the absorption and scattering coefficient of chromosphere at a particular wavelength. But there are many challenges to overcome when infrared light penetrates deeper into our skull which acts as a high scattering medium. This improvement has taken a new shape with the application of diffusion theory to separate the absorbed light and scattered light in tissues. With this motivation, in this project we designed a dual-frequency (120MHz and 125MHz) based two wavelengths LED transmitting system to transmit optical power through fibers and penetrate NIR light into a scattering medium which is then received by the detection and demodulation circuit for data acquisition. Different methods available to measure absorption and reduced scattering coefficient for non-homogenous medium will be discussed.


DONGSHENG ZHANG

Modeling Critical Node Attacks in Mobile Wireless Networks

When & Where:


246 Nichols Hall

Committee Members:

James Sterbenz, Chair
Victor Frost
Gary Minden
Bernhard Plattner
John Symons

Abstract

Understanding network behavior under challenges is essential to constructing a resilient and survivable network. Due to the mobility and wireless channel properties, it is more difficult to model and analyze mobile wireless networks under various challenges. We provide a comprehensive model to analyze malicious attacks against mobile ad hoc networks. We analyze comprehensive graph-theoretical properties and network performance of the dynamic networks under attacks against the critical nodes using both synthetic and real-world mobility traces. Our study provides insights into the design and construction of resilient and survivable mobile wireless networks.


JOHN GIBBONS

Modeling Content Lifespan in Online Social Networks Using Data Mining

When & Where:


246 Nichols Hall

Committee Members:

Arvin Agah, Chair
Perry Alexander
Jerzy Grzymala-Busse
Jim Miller
Prajna Dhar

Abstract

Online Social Networks (OSNs) are integrated into business, entertainment, politics, and education; they are integrated into nearly every facet of our everyday lives. They have played essential roles in milestones for humanity, such as the social revolutions in certain countries, to more day-to-day activities, such as streaming entertaining or educational materials. Not surprisingly, social networks are the subject of study, not only for computer scientists, but also for economists, sociologists, political scientists, and psychologists, among others. In this dissertation, we build a model that is used to classify content on the OSNs of Reddit, 4chan, Flickr, and YouTube according the types of lifespan their content have and the popularity tiers that the content reaches. The proposed model is evaluated using 10-fold cross-validation, using data mining techniques of Sequential Minimal Optimization (SMO), which is a support vector machine algorithm, Decision Table, Naïve Bayes, and Random Forest. The run times and accuracies are compared across OSNs, models, and data mining algorithms. 
Our experiments compared the runtimes and accuracy of SMO, Naïve Bayes, Decision Table, and Random Forest to classify the lifespan of content on Reddit, 4chan, and Flickr as well as classify the popularity tier of content on Reddit, 4chan, Flickr, and YouTube. The experimental results indicate that SMO is capable of outperforming the other algorithms in runtime across all OSNs. Decision Table has the longest observed runtimes, failing to complete analysis before system crashes in some cases. The statistical analysis indicates, with 95% confidence, there is no statistically significant difference in accuracy between the algorithms across all OSNs. Reddit content was shown, with 95% confidence, to be the OSN least likely to be misclassified. All other OSNs, were shown to have no statistically significant difference in terms of their content being more or less likely to be misclassified when compared pairwise with each other.


MIKE ZAKHAROV

Designing a Multichannel Sense-and-Avoid Radar for Small UASs

When & Where:


2001B Eaton Hall

Committee Members:

Chris Allen, Chair
Ron Hui
Jim Stiles


Abstract

To enhance the capabilities of autonomous flight systems for Unmanned Aircraft Systems (UASs), a multichannel Frequency-Modulated Continuous Wave (FMCW) collision-avoidance radar with a center frequency of 1.445 GHz is designed. The radar is intended to provide situational awareness for a 40% Yak-54 model aircraft by providing in real time range, radial velocity and angle-of-arrival (AoA) information on surrounding targets with an update rate of 10 Hz. A target’s range and Doppler is determined by employing a two-dimensional (2-D) Fast Fourier Transform (FFT) on the received signal which maps the target to a specific range-Doppler bin. Tests have shown that the proto-type radar is capable of providing range detection up to 430 m with an accuracy of 0.6 m for a target with a 1-m2 radar cross section (RCS). The radar is designed to provide a Doppler resolution of 10 Hz. An array of receiving antennas is used to determine a target’s elevation and azimuth angles by exploiting the received signal’s phase difference at each individual antenna. The AoA measurement error due to thermal noise was found to be less than 3° for a signal-to-noise ratio (SNR) of 18 dB.


YEFENG SUN

Optical Absorption Simulation by ZnTe/CdTe Superlattices Based on Kronig-Penney Model

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Ken Demarest
Victor Frost


Abstract

Nowadays superlattices (SLs) are widely used as optical materials due to optical absorption properties. Short-period superlattices with certain optical properties such as InAs/GaSb type-II superlattices and ZnTe/CdTe superlattices can serve for mid-infrared (MIR) detection and solar cells. In this study, a standard Kronig-Penney model is applied to calculate the mini band structure of such SLs. On the basis of the energy-balance equation derived from the Boltzmann equation, a simple approach is used to calculate the optical absorption coefficient for the corresponding SL systems. Comparison of simulation results and experimental findings will be made in this study. And reasonable causes of error and future work will be discussed.


ADAM VAN HORN

Machine Learning Techniques for High Performance Engine Calibration

When & Where:


2001B Eaton Hall

Committee Members:

Arvin Agah, Chair
Jerzy Grzymala-Busse
James Miller
Christopher Depcik

Abstract

Ever since the advent of electronic fuel injection, auto manufacturers have been able to increase fuel efficiency and power production, and to meet stricter emission standards. Most of these systems use engine sensors (RPM, Throttle Position, etc.) in concert with look-up tables to determine the correct amount of fuel to inject. While these systems work well, it is time and labor intensive to fine tune the parameters for these look-up tables. Automobile manufacturers are able to absorb the cost of this calibration since the variation between engines in a new model line is often small enough as to be inconsequential for a specific calibration. 

However, a growing number of drivers are interested in modifying their vehicles with the intent of improving performance. While some aftermarket performance upgrades can be accounted for by the original manufacturer equipped (OEM) electronic control unit (ECU), other more significant changes, such as adding a turbocharger or installing larger fuel injectors, require more drastic accommodations. These modifications often require an entirely new ECU calibration or an aftermarket ECU to properly control the upgraded engine. The problem then, is that the driver becomes responsible for the calibration of the ECU of this “new” engine. However, most drivers are unable to devote the resources required to achieve a calibration of the same quality as the original manufacturers. At best, this results in reduced fuel economy and performance, and at worst, unsafe and possibly destructive operation of the engine. 

The purpose of this thesis is to design and develop—using machine learning techniques—an approximate predictive model from current engine data logs, which can be used to rapidly and incrementally improve the calibration of the engine. While there has been research into novel control methods for engine air-fuel ratio control, these methods are inaccessible to the majority of end users, either due to cost or the required expertise with engine calibration. This study shows that there is a great deal of promise in applying machine learning techniques to engine calibration and that the process of engine calibration can be expedited by the application of these techniques.


LANE RYAN

Polyphase-Coded FM Waveform Optimization within a LINC Transmit Architecture

When & Where:


246 Nichols Hall

Committee Members:

Chris Allen, Chair
Shannon Blunt
Jim Stiles


Abstract

Linear amplification using nonlinear components (LINC) is a design approach that can suppress the effects of the nonlinear distortion introduced by the transmitter. A typical transmitter design requirement is for the high power amplifier to be operated in saturation. The LINC approach described here employs a polyphase-coded FM (PCFM) waveform that is able to overcome this saturated amplifier distortion to greatly improve the spectral containment of the transmitted waveform. A two stage optimization process involving simulation and hardware-in-the-loop routines is used to create the final PCFM waveform code.


YUFEI CHENG

Performance Analysis of Different Traffic Types in Mobile Ad-hoc Networks

When & Where:


246 Nichols Hall

Committee Members:

James Sterbenz, Chair
Fengjun Li
Gary Minden


Abstract

Mobile Ad Hoc networks~(MANETs) present great challenges to new protocol design, especially in scenarios where nodes are high mobile. Routing protocols performance is essential to the performance of wireless networks especially in mobile ad-hoc scenarios. The development of new routing protocols requires comparing them against well-known protocols in various simulation environments. Furthermore, application traffic like transactional application traffic has not been investigated for domain-specific MANETs scenarios. Overall, there are not enough performance comparison work in the past literatures. This thesis presents extensive performance comparison work with MANETs and uses inclusive parameter sets including both highly-dynamic environment as well as low-mobility cases.


EVAN AUSTIN

Theorem Provers as Libraries: An Approach to Formally Verifying Functional Programs

When & Where:


250 Nichols Hall

Committee Members:

Perry Alexander, Chair
Arvin Agah
Andy Gill
Prasad Kulkarni
Erik Van Vleck

Abstract

Property-directed verification of functional programs tends to take one of two paths. 
First, is the traditional testing approach, where properties are expressed in the original programming language and checked with a collection of test data. 
Tools following this technique have the advantage of a direct integration with the host system, but their resultant statement about a program's correctness is anything but a guarantee. 
Alternatively, for those desiring a more rigorous approach, properties can be written and checked with a formal tool; typically, an external proof system. 
This process delivers a well reasoned argument for a program's correctness, however, it comes at the cost of a more complex system integration requiring additional expertise. 

We propose a hybrid approach that captures the best of both worlds: the formality of a proof system paired with the native integration of an embedded, domain specific language for testing. 
Presented in this document is a description of the hybridization, a theorem prover as a library, as well as a classification of our target properties for case study. 
As we attempt to verify these properties, our goal is to document and formalize the logical connection between language and tool. 
The resultant process will be evaluated both for the strength of its reasoning power and its viability for real world application.