Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Andrew Riachi

An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux Smaps

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Prasad Kulkarni, Chair
Perry Alexander
Drew Davidson
Heechul Yun

Abstract

Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.

In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Alfred Fontes

Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope Modulations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.

A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal. 

The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.


Qua Nguyen

Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless Communications

When & Where:


Zoom Defense, please email jgrisafe@ku.edu for link.

Committee Members:

Erik Perrins, Chair
Morteza Hashemi
Zijun Yao
Taejoon Kim
KC Kong

Abstract

This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.

In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.

The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.

This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.


Arin Dutta

Performance Analysis of Distributed Raman Amplification with Different Pumping Configurations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rongqing Hui, Chair
Morteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao

Abstract

As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.

Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.

The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.

As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research  is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.


Audrey Mockenhaupt

Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target Recognition

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jon Owen


Abstract

Pending.


Rich Simeon

Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry Applications

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Erik Perrins, Chair
Shannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin

Abstract

The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.

A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.

Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.


Past Defense Notices

Dates

GOVIND VEDALA

Iterative SSBI Compensation in Optical OFDM Systems and the Impact of SOA Nonlinearities MS Project Defense (EE)

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Chris Allen
Erik Perrins


Abstract

Multicarrier modulation using Orthogonal Frequency Division Multiplexing (OFDM) is a best fit candidate for the next generation long-haul optical transmission systems, offering high degree of spectral efficiency and easing the compensation of linear impairments such as chromatic dispersion and polarization mode dispersion, at the receiver. Optical OFDM comes in two flavors – coherent optical OFDM (CO-OFDM) and direct detection optical OFDM (DD-OFDM), each having its own share of pros and cons. CO-OFDM is highly robust to fiber impairments and imposes a relaxation on the electronic component bandwidth requirements, but requires narrow linewidth lasers, optical hybrids and local oscillators. On the other hand DD-OFDM has relaxed laser linewidth requirement and low complexity receiver making it an attractive multicarrier system. However, DD-OFDM system suffers from signal-signal beat interference (SSBI), caused by mixing among the sub-carriers in the photo detector, which deteriorates the system performance. Previously, to mitigate the effect of SSBI, a guard band was used between optical carrier and data sideband. In this project, we experimentally demonstrate a linearly field modulated virtual single sideband OFDM (VSSB-OFDM) transmission with direct detection and digitally compensate for the SSBI using an iterative SSBI compensation algorithm. 
Semiconductor optical amplifiers (SOA), with their small footprint, ultra-high gain bandwidth, and ease of integration, are attracting the attention of optical telecommunication engineers for their use in high speed transmission systems as inline amplifiers. However, the SOA gain saturation induced nonlinearities cause pulse distortion and induce nonlinear cross talk effects such as cross gain modulation especially in Wavelength Division Multiplexed systems. In this project, we also evaluate the performance of iterative SSBI compensation in an optical OFDM system, in the presence of these SOA induced nonlinearities. 

 


KEERTHI GANTA

TCP Illinois Protocol Implementation in ns-3

When & Where:


250 Nichols Hall

Committee Members:

James Sterbenz, Chair
Victor Frost
Bo Luo


Abstract

The choice of congestion control algorithm has an impact on the performance of a network. The congestion control algorithm should be selected and implemented based on the network scenario in order to achieve better results. Congestion control in high speed networks and networks with large BDP is proved to be more critical due to the high amount of data at risk. There are problems in achieving better throughput with conventional TCP in the above mentioned scenario. Over the years conventional TCP is modified to pave way for TCP variants that could address the issues in high speed networks. TCP Illinois is one such protocol for high speed networks. It is a hybrid version of a congestion control algorithm as it uses both packet loss and delay information to decide on the window size. The packet loss information is used to decide on whether to increase or decrease the congestion window and delay information is used to assess the amount of increase or decrease that has to be made.


ADITYA RAVIKANTI

sheets-db: Database powered by Google Spreadsheets

When & Where:


2001B Eaton Hall

Committee Members:

Andy Gill, Chair
Perry Alexander
Prasad Kulkarni


Abstract

The sheets-db library is a Haskell binding to Google Sheets API. sheets-db allows Haskell users to utilize google spread sheets as a light weight database. It provides various functions to create, read, update and delete rows in spreadsheets along with a way to construct simple structured queries. 


NIRANJAN PURA VEDAMURTHY

Testing the Accuracy of Erlang Delay Formula for Smaller Number of TCP Flows

When & Where:


246 Nichols Hall

Committee Members:

Victor Frost, Chair
Gary Minden
Glenn Prescott


Abstract

The Erlang delay formula for dimensioning different networks is used to calculate the probability of congestion. Testing the accuracy of a probability of congestion found using the Erlang formula against the simulation for probability of packet loss is demonstrated in this project. The simulations are done when TCP traffic is applied through one bottleneck node. Three different source traffic models having small number of flows is considered. Simulations results for three different source traffic models is shown in terms of probability of packet loss and load supplied to the topology. Various traffic parameters are varied in order to show the impact on the probability of packet loss and to compare with the Erlang prediction for probability of congestion.

 


MAHMOOD HAMEED

Nonlinear Mixing in Optical Multicarrier Systems

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Shannon Blunt
Erik Perrins
Alessandro Salandrino
Carey Johnson

Abstract

Efficient use of the vast spectrum offered by fiber-optic links by an end user with relatively small bandwidth requirement is possible by partitioning a high speed signal in a wavelength channel into multiple low-rate subcarriers. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to experimentally understand and minimize the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and direct detection systems, involving a nonlinear component such as a semiconductor optical amplifier. We also analyze impact of clipping and quantization on multicarrier signals and compare electrical bandwidth utilization of two popular multiplexing techniques in orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. 
For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise requirement on the RF carrier, realizes the full potential of the optical heterodyne technique, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. 
For direct detection systems, we first experimentally compare performance degradations of coherent optical OFDM and single carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate the performance of signal-signal beat interference (SSBI) compensation technique in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be removed from the data signal to a large extent when the optical system operates in the linear region, especially when the carrier-to-signal power ratio is low. 


SUSOBHAN DAS

Tunable Nano-photonic Devices

When & Where:


246 Nichols Hall

Committee Members:

Ron Hui, Chair
Alessandro Salandrino
Chris Allen
Jim Stiles
Judy Wu

Abstract

In nano-photonics, the control of optical signals is based on tuning of the material optical properties in which the electromagnetic field propagates, and thus the choice of materials and of the physical modulation mechanism plays a crucial role. Several materials such as graphene, Indium Tin Oxide (ITO), and vanadium di-oxide (VO2) investigated here have attracted a great deal of attention in the nanophotonic community because of their remarkable tunability. This dissertation will include both theoretical modeling and experimental characterization of functional electro-optic materials and their applications in guided-wave photonic structures. 
We have characterized the complex index of graphene in near infrared (NIR) wavelength through the reflectivity measurement on a SiO2/Si substrate. The measured complex indices as the function of the applied gate electric voltage agreed with the prediction of the Kubo formula. 
We have performed the mathematical modeling of permittivity of ITO based on the Drude Model. Results show that ITO can be used as a plasmonic material and performs better than noble metals for applications in NIR wavelength region. Additionally, the permittivity of ITO can be tuned by carrier density change through applied voltage. An electro-optic modulator (EOM) based on plasmonically enhanced graphene has been proposed and modeled. We show that the tuning of graphene chemical potential through electrical gating is able to switch on and off the ITO plasmonic resonance. This mechanism enables dramatically increased electro-absorption efficiency. 
Another novel photonic structure we are investigating is a multimode EOM based on the electrically tuned optical absorption of ITO in NIR wavelengths. The capability of mode-multiplexing increases the functionality per area in a nanophotonic chip. Proper design of ITO structure based on the profiles of y-polarized TE11 and TE21 modes allows the modulation of both modes simultaneously and differentially. 
We have experimentally demonstrated the ultrafast changes of optical properties associated with dielectric-to-metal phase transition of VO2. This measurement is based on a fiber-optic pump-probe setup in NIR wavelength. Instantaneous optical phase modulation of the probe was demonstrated during pump pulse leading edge, which could be converted into an intensity modulation of the probe through an optical frequency discriminator 


NIHARIKA DIVEKAR

Feature Extraction for Alias Resolution

When & Where:


2001B Eaton Hall

Committee Members:

Joseph Evans, Chair
Gary Minden
Benjamin Ewy


Abstract

Alias resolution or disambiguation is the process of determining which IP addresses belong to the same router. The focus of this project is the feature extraction aspect of the AliasCluster alias resolution technique. This technique uses five features extracted from traceroutes and uses a Naive Bayesian approach to resolve router aliases. The features extracted are the common subnet, percentage out-degree match for hop count ≤ 3, percentage out-degree match for hop count ≤ 4, percentage hop-count match for hop count ≤ 3, and percentage hop-count match for hop count ≤ 4. Using traceroutes from publicly available databases, the common subnet feature is determined by finding the number of bits common to two addresses, and the out-degree match is found by checking the number of interfaces in the downpath that appear in common to two addresses. The hop-count match is determined in a approach similar to the out-degree match, with an additional condition that the common interfaces must appear at the same hop count. In this project, algorithms to extract these features are implemented in Python and the feature distributions are compared to those described in the original AliasCluster work.


HAO CHEN

Mutual Information Accumulation over Wireless Networks: Fundamentals, Applications, and Implementation

When & Where:


246 Nichols Hall

Committee Members:

Lingjia Liu, Chair
Shannon Blunt
Victor Frost
Erik Perrins
Zsolt Talata

Abstract

Future wireless networks will face a compound challenge of supporting large traffic volumes, providing ultra-reliable and low latency connections to ultra-dense mobile devices. To meet this challenge, various new technologies have been introduced among which mutual-information accumulation (MIA), an advanced physical (PHY) layer coding technique, has been shown to significantly improve the network performance. Since the PHY layer is the fundamental layer, MIA could potentially impact various network layers of a wireless network. Accordingly, the understanding of improving network design based on MIA is far from being fully developed. In the proposed research, we target to 1) apply MIA techniques to various wireless networks such as cognitive radio networks, device-to-device networks, etc; 2) mathematically characterize the performance of such networks employing MIA; 3) use hardware to demonstrate the performance of MIA for a simple wireless network using the Universal Software Radio Peripherals (USRPs).


BHARATH ELLURU

Measuring Firmware of An Embedded Device

When & Where:


2001B Eaton Hall

Committee Members:

Perry Alexander, Chair
Jerzy Grzymala-Busse
Prasad Kulkarni


Abstract

System Security has been one of the primary focus areas for embedded devices in recent times. The pervasion of embedded devices over a wide range of applications ranging from routers to RFID badge controls emphasizes the need for System Security. Any security compromise may result in manipulation, damage or loss of crucial data leading to unwarranted results. A conventional approach towards system security is the use of static analysis tools on source code. However, very few of these tools operate at the system level. This project envisions measuring (Looking at a given device and analyzing what is present)firmware of Gumstix, an embedded device running poky version of Linux and build a model that serves as an input to Action Notation Modelling Language (ANML) planner. An ANML planner can be later on used to generate a check list of vulnerabilities, which is out of scope for this project. 


PENG SENG TAN

Addressing Spectrum Congestion by Spectrally-Cognizant Radar Design

When & Where:


250 Nichols Hall

Committee Members:

Jim Stiles, Chair
Shannon Blunt
Chris Allen
Lingjia Liu
Tyrone Duncan

Abstract

Due to the need for greater Radio Frequency (RF) spectrum by wireless communication industries such as mobile telephony, cable/satellite and wireless internet as a result of growing consumer base and demands, it has led to the issue of spectrum congestion as radar systems have traditionally maintain the largest share of the RF spectrum. To resolve the spectrum congestion problem, it has become even necessary for users from both types of systems to coexist within a finite spectrum allocation. However, this then leads to other problems such as the increased likelihood of mutual interference experienced by all users that are coexisting within the finite spectrum. 
In this dissertation, we propose to address the problem of spectrum congestion via two independent approaches. The first approach involves designing an intelligent scheme to perform spectrum reallocation to radar systems such that the range resolution performance can be maintained with a smaller resulting bandwidth but at a cost of degraded sidelobe performance. The second approach involves designing a radar waveform that possesses good spectral containment property by utilizing the framework of Poly-phased coded Frequency Modulated (PCFM) waveforms such that the waveform will mitigate the issue of interference experienced by other users coexisting within the same band.