Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Andrew Riachi
An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux SmapsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Prasad Kulkarni, ChairPerry Alexander
Drew Davidson
Heechul Yun
Abstract
Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.
In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.
Elizabeth Wyss
A New Frontier for Software Security: Diving Deep into npmWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairAlex Bardas
Fengjun Li
Bo Luo
J. Walker
Abstract
Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week.
However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.
This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.
Alfred Fontes
Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope ModulationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.
A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal.
The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.
Qua Nguyen
Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless CommunicationsWhen & Where:
Zoom Defense, please email jgrisafe@ku.edu for link.
Committee Members:
Erik Perrins, ChairMorteza Hashemi
Zijun Yao
Taejoon Kim
KC Kong
Abstract
This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.
In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.
The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.
This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.
Arin Dutta
Performance Analysis of Distributed Raman Amplification with Different Pumping ConfigurationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rongqing Hui, ChairMorteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao
Abstract
As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.
Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.
The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.
As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.
Audrey Mockenhaupt
Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target RecognitionWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jon Owen
Abstract
Pending.
Rich Simeon
Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry ApplicationsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Erik Perrins, ChairShannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin
Abstract
The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.
A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.
Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.
Past Defense Notices
RITANKAR GANGULY
Graph Search Algorithms and Their ApplicationsWhen & Where:
2001B Eaton Hall
Committee Members:
Man Kong, ChairNancy Kinnersley
Jim Miller
Abstract
Depth- First Search (DFS) and Breadth- First Search are two of the most extensively used graph traversal algorithms to compile information about the graph in linear time. These two graph traversal mechanisms overlay a path to explore further the applications based on them that are widely used in Network Engineering, Web Analytics, Social Networking, Postal Services and Hardware Implementations. The difference between DFS and BFS results in the order in which they explore vertices and the implementation techniques for storing the discovered but un-processed vertices in the graph. BFS algorithm usually needs less time but consumes more computer memory than a DFS implementation. DFS algorithm is based on LIFO mechanism and is implemented using stack. BFS algorithm is based on FIFO technique and is realized using a queue. The order in which the vertices are visited using DFS or BFS can be realized with the help of a tree. The type of graph (directed or undirected) along with the edges of these trees form the basis of all the applications on BFS or DFS. Determining the shortest path between vertices of an un-weighted graph can be used in network engineering to transfer data packets. Checking for the presence of cycle can be critical in minimizing redundancy in telecommunications and is extensively used by social networking websites these days to analyse information as how people are connected. Finding bridges in a graph or determining the set of articulation vertices help minimize vulnerability in network design. Finding the strongly connected components in a graph can be used by model checkers in computer science. Determining an Euler circuit in a graph can be used by the postal service industries and the algorithm can be successfully implemented with linear running time using enhanced data structures. This survey project briefly defines and explains the basics of DFS and BFS traversal and explores some of the applications that are based on these algorithms.
MICHAEL BLECHA
Implementation of a 2.45GHz Power Amplifier for use in Collision Avoidance RadarWhen & Where:
2001B Eaton Hall
Committee Members:
Chris Allen, ChairGlenn Prescott
Jim Stiles
Abstract
The integration of a RF power amplifier into a Collision Avoidance Radar will increase the maximum detection distance of the radar. Increasing the maximum detection distance will allow a radar system mounted on an Unmanned Aircraft Vehicle to observe obstacles earlier and give the UAV more time to react. The UAVradars project has been miniaturized to support operation on an unmanned aircraft and could benefit from an increase in maximum detection distance.
The goal of this project is to create a one watt power amplifier for the 2.4GHz-2.5GHz band that can be integrated into the UAVradars project. The amplifier will be powered from existing power supplies in the radar system and must be small and lightweight to support operation on board the UAV in flight. This project will consist of the schematic and layout design, simulations, fabrication, and characterization of the power amplifier. The power amplifier will be designed to fit into the current system with minimal system modifications required.
HARSHUL ROUTHU
A Comparison of Two Decision Tree Generating Algorithms C4.5 and CART Based on Testing Datasets with Missing Attribute ValuesWhen & Where:
2001B Eaton Hall
Committee Members:
Jerzy Grzymala-Busse, ChairPrasad Kulkarni
Bo Luo
Abstract
In data mining, missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data. Classification of missing data is a challenging task. One of the most popular techniques for classifying missing data is decision tree induction.
In this project, we compare two decision tree generating algorithms CART and C4.5 with their original implementations on different datasets with missing attribute values, taken from University of California Irvine (UCI). The comparative analysis of these two implementations is carried out in terms of accuracy on training and testing data, and decision tree complexity based on its depth and size. Results from experiments show that there is statistically insignificant difference between C4.5 and CART in terms of accuracy on testing data and complexity of the decision tree. On the other hand, accuracy on training data is significantly better for CART compared to C4.5.
HADEEL ALABANDI
A Survey of Metrics Employed to Assess Software SecurityWhen & Where:
246 Nichols Hall
Committee Members:
Prasad Kulkarni, ChairAndy Gill
Heechul Yun
Abstract
Measuring and assessing software security is a critical concern as it is undesirable to develop risky and insecure software. Various measurement approaches and metrics have been defined to assess software security. For researchers and software developers, it is significant to have different metrics and measurement models at one place either to evaluate the existing measurement approaches, to compare between two or more metrics or to be able to find the proper metric to measure the software security at a specific software development phase. There is no existing survey of software security metrics that covers metrics available at all the software development phases. In this paper, we present a survey of metrics used to assess and measure software security, and we categorized them based on software development phases. Our findings reveal a critical lack of automated tools, and the necessity to possess detailed knowledge or experience of the measured software as the major hindrances in the use of existing software security metrics.
HARISH SAMPANGI
Delay Feedback Reservoir (DFR) Design in Neuromorphic Computing Systems and its Application in Wireless CommunicationsWhen & Where:
2001B Eaton Hall
Committee Members:
Yang Yi, ChairGlenn Prescott
Jim Rowland
Abstract
As semiconductor technologies continue to scale further into the nanometer regime, it is important to study how non-traditional computer architectures may be uniquely suited to take advantage of the novel behavior observed for many emerging technologies. Neuromorphic computing system represents a type of non-traditional architecture encompassing evolutionary. Reservoir computing, a computational paradigm inspired on neural systems, has become increasingly popular for solving a variety of complex recognition and classification problems. The traditional reservoir computing methods employs three different layers – the input layer, the reservoir and the output layer. The input layer feeds the input signals to the reservoir via fixed random weighted connections. These weights will scale the input that is given to the nodes, creating different input scaling for the input nodes. The second layer, which is called the reservoir, usually consists of a large number of randomly connected nonlinear nodes, constituting a recurrent network. Finally, the output weights are extracted from the output layer. Contrary to this traditional approach, the delayed feedback reservoir replaces the entire network of connected non-liner nodes just with a single nonlinear node subjected to delayed feedback. This approach does not only provide a drastic simplification of the experimental implementation of artificial neural networks for computing purposes, it also demonstrates the huge computational processing power hidden in even the simplest delay-dynamical system. Previous implementation of reservoir computing using the echo state network has been proven efficient for channel estimation in wireless Orthogonal Frequency-Division Multiplexing (OFDM) systems. This project aims at verifying the performance of DFR in channel estimation, by calculating its bit error rate (BER) and comparing it with other standard techniques like the LS and MMSE.
AUDREY SEYBERT
Analysis of Artifacts Inherent to Real-Time Radar Target EmulationWhen & Where:
246 Nichols Hall
Committee Members:
Chris Allen, ChairShannon Blunt
Jim Stiles
Abstract
Executing high-fidelity tests of radar hardware requires real-time fixed-latency target emulation. Because fundamental radar measurements occur in the time domain, real-time fixed latency target emulation is essential to producing an accurate representation of a radar environment. Radar test equipment is further constrained by the application-specific minimum delay to a target of interest, a parameter that limits the maximum latency through the target emulator algorithm. These time constraints on radar target emulation result in imperfect DSP algorithms that generate spectral artifacts. Knowledge of the behavior and predictability of these spectral artifacts is the key to identifying whether a particular suite of hardware is sufficient to execute tests for a particular radar design. This work presents an analysis of the design considerations required for development of a digital radar target emulator. Further considerations include how the spectral artifacts inherent to the algorithms change with respect to the radar environment and an analysis of how effectively various DSP algorithms can be used to produce an accurate representation of simple target scenarios. This work presents a model representative of natural target motion, a model that is representative of the side effects of digital target emulation, and finally a true HDL simulation of a target.
CHRISTOPHER SEASHOLTZ
Security and Privacy Vulnerabilities in Unmanned Aerial VehiclesWhen & Where:
246 Nichols Hall
Committee Members:
Bo Luo, ChairJoe Evans
Fengjun Li
Abstract
In the past few years, UAVs have become very popular amongst the average citizen. Much like their military counterpart, these UAVs provide the ability to be controlled by computers, instead of a remote controller. While this may not appear to be a major security issue, the information gained from compromising a UAV can be used for other malicious activities. To understand potential attack surfaces of various UAVs, this paper presents the theory behind multiple possible attacks, as well as implementations of a select number of attacks mentioned. The main objective of this project was to obtain complete control of a UAV while in flight. Only a few of the attacks demonstrated, or mentioned, provide this ability. The remaining attacks mentioned provide information that can be used in conjunction with others in order to provide full control, or complete knowledge, of a system. Once the attacks have been proven possible, measures for proper defense must be taken. For each attack described in this paper, possible countermeasures will be given and explained.
ARIJIT BASU
Analyzing Bag of Visual Words for Efficient Content Based Image Retrieval and ClassificationWhen & Where:
250 Nichols Hall
Committee Members:
Richard Wang, ChairPrasad Kulkarni
Bo Luo
Abstract
Content Based Image Retrieval also known as QBIC (Query by Image Content) is a retrieval technique where detailed analysis of the features of an image is done for retrieving similar images from the image base. Content refers to any kind of information that can derived from the image itself like textures, color, shape which are primarily global features and local features like Sift, Surf, Hog etc. Content Based image retrieval as opposed to traditional text based image retrieval has been in the limelight for quite a while owing to its contribution in putting away too much responsibility from the end user and trying to bridge the semantic gap between low level features and high level human perception.
Image Categorization is the process of classifying distinct image categories based on image features extracted from a subset of images or the entire database from each category followed by feeding it to a machine learning classifier which predicts the category labels eventually. Bag of Words Model is a very well known flexible model that represents an image as a histogram of visual patches. The idea originally comes from application of Bag of Words model in document retrieval and texture classification. Clustering is a very important aspect of the BOW model. It helps in grouping identical features from the entire dataset and hence feeding it to the Support Vector Machine Classifier. The SVM classifier takes into account every image that has been represented as a bag of visual features after clustering and then performs quality predictions. In this work we first apply the Bag of Words on well known datasets and then obtain accuracy parameters like Confusion Matrix, MCC, (Matthews Correlation Coefficient) and other statistical measures. For Feature selection we considered SURF Features owing to their rotation and scale invariant characteristics. The model has been trained and applied on two well known datasets Caltech 101 and Flickr- 25K followed by detailed performance analysis in different scenarios.
SOUMYAJIT SARKAR
Biometric Analysis of Human Ear Recognition Using Traditional ApproachWhen & Where:
246 Nichols Hall
Committee Members:
Richard Wang, ChairJerzy Grzymala-Busse
Bo Luo
Abstract
Biometric ear authentication has received enormous popularity in recent years due to its uniqueness for each and every individual, even for identical twins. In this paper, two scale and rotation invariant feature detectors, SIFT and SURF, are adopted for recognition and authentication of ear images. An extensive analysis has been made on how these two descriptors work under certain real-life conditions; and a performance measure has been given. The proposed technique is evaluated and compared with other approaches on two data sets. Extensive experimental study demonstrates the effectiveness of the proposed strategy. Robust Estimation algorithm has been implemented to remove several false matches and improved results have been provided. Deep Learning has become a new way to detect features in objects and is also used extensively for recognition purposes. Sophisticated deep learning techniques like Convolutional Neural Networks(CNNs) have also been implemented and analysis has been done.Deep Learning Models need a lot of data to give a good result, unfortunately ear datasets available publicly are not very large and thus CNN simulations are being carried out on other state of the art datasets related to this research for evaluation of the model.
RUXIN XIE
Single-fiber-laser-based-multimodal coherent Raman SystemWhen & Where:
250 Nichols Hall
Committee Members:
Ron Hui, ChairChris Allen
Shannon Blunt
Victor Frost
Carey Johnson
Abstract
Coherent Raman scattering (CRS) is an appealing technique for spectroscopy and microscopy, due to its selectivity and sensitivity. We designed and built single-fiber-laser-based coherent Raman scattering spectroscopy and microscopy system which can automatically maintain frequency synchronization between pump and Stokes beam. The Stokes frequency shift is generated by soliton self-frequency shift (SSFS) through a photonic crystal fiber. The impact of pulse chirping on the signal power reduction of coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been investigate through theoretical analysis and experiment.
Our multimodal system provides measurement diversity among CARS, SRS and photothermal, which can be used for comparison and offering complementary information. Distribution of hemoglobin in human red blood cells and lipids in sliced mouse brain sample have been imaged. Frequency and power dependency of photothermal signal is characterized.
Based on the polarization dependency of the third-order susceptibility of the material, the polarization switched SRS method is able to eliminate the nonresonant photothermal signal from the resonant SRS signal. Red blood cells and sliced mouse brain samples were imaged to demonstrate the capability of the proposed technique. The result shows that polarization switched SRS removes most of the photothermal signal.