Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Andrew Riachi

An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux Smaps

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Prasad Kulkarni, Chair
Perry Alexander
Drew Davidson
Heechul Yun

Abstract

Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.

In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Alfred Fontes

Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope Modulations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.

A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal. 

The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.


Qua Nguyen

Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless Communications

When & Where:


Zoom Defense, please email jgrisafe@ku.edu for link.

Committee Members:

Erik Perrins, Chair
Morteza Hashemi
Zijun Yao
Taejoon Kim
KC Kong

Abstract

This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.

In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.

The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.

This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.


Arin Dutta

Performance Analysis of Distributed Raman Amplification with Different Pumping Configurations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rongqing Hui, Chair
Morteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao

Abstract

As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.

Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.

The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.

As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research  is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.


Audrey Mockenhaupt

Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target Recognition

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jon Owen


Abstract

As machine learning (ML), artificial intelligence (AI), and deep learning continue to advance, their applications become more diverse – one such application is synthetic aperture radar (SAR) automatic target recognition (ATR). These SAR ATR networks use different forms of deep learning such as convolutional neural networks (CNN) to classify targets in SAR imagery. An emerging research area of SAR is dual function radar communication (DFRC) which performs both radar and communications functions using a single co-designed modulation. The utilization of DFRC emissions for SAR imaging impacts image quality, thereby influencing SAR ATR network training. Here, using the Civilian Vehicle Data Dome dataset from the AFRL, SAR ATR networks are trained and evaluated with simulated data generated using Gaussian Minimum Shift Keying (GMSK) and Linear Frequency Modulation (LFM) waveforms. The networks are used to compare how the target classification accuracy of the ATR network differ between DFRC (i.e., GMSK) and baseline (i.e., LFM) emissions. Furthermore, as is common in pulse-agile transmission structures, an effect known as ’range sidelobe modulation’ is examined, along with its impact on SAR ATR. Finally, it is shown that SAR ATR network can be trained for GMSK emissions using existing LFM datasets via two types of data augmentation.


Past Defense Notices

Dates

OMAR BARI

Ensembles of Text and Time-Series Models for Automatic Generation of Financial Trading Signals

When & Where:


2001B Eaton Hall

Committee Members:

Arvin Agah, Chair
Joseph Evans
Andy Gill
Jerzy Grzymala-Busse
Sara Wilson

Abstract

Event Studies in finance have focused on traditional news headlines to assess the impact an event has on a traded company. The increased proliferation of news and information produced by social media content has disrupted this trend. Although researchers have begun to identify trading opportunities from social media platforms, such as Twitter, almost all techniques use a general sentiment from large collections of tweets. Though useful, general sentiment does not provide an opportunity to indicate specific events worthy of affecting stock prices.


AQSA PATEL

Interpretation of Radar Altimeter Waveforms using Ku-band Ultra-Wideband Altimeter Data

When & Where:


317 Nichols Hall

Committee Members:

Carl Leuschen, Chair
Prasad Kulkarni
Ron Hui
John Paden
David Braaten

Abstract

The surface-elevation of ice sheets and sea ice is currently measured using both satellite and airborne radar altimeters. These measurements are used for generating mass balance estimates of ice sheets and thickness estimates of sea ice. However, due to the penetration of the altimeter signal into the snow there is ambiguity between the surface tracking point and the actual surface location which produces errors in the surface elevation measurement. In order to address how the penetration of the signal affects the shape of the return waveform, it is important to study the effect sub-surface scattering and seasonal variations in properties of snow have on the return waveform to correctly interpret the satellite radar altimeter data. To address this problem, an ultra-wide bandwidth Ku-band radar altimeter was developed at the Center for Remote Sensing of Ice Sheets (CReSIS). The Ku-band altimeter operates over the frequency range of 12 to 18 GHz providing very fine resolution to measure ice surface and resolve the sub-surface features of the snow. It is designed to encompass the frequency band of satellite radar altimeters. The data from Ku-band altimeter can be used to simulate satellite radar altimeter data, and these simulated waveforms can help us understand the effect of signal penetration and sub-surface scattering on low bandwidth satellite altimeter returns. The extensive dataset collected as a part of the Operation Ice Bridge (OIB) campaign can be used to interpret satellite radar altimeter data over surfaces with varying snow conditions. The goal of this research is to use waveform modeling and data inter-comparisons of full and reduced bandwidth data products from Ku-band radar altimeter to investigate the effect of signal penetration and snow conditions on surface tracking using threshold and waveform fitting retracking algorithms to improve the retrieval of surface elevation from satellite radar altimeters.


VAISHNAVI YADALAM

Real Time Video Streaming over a Multihop Ad Hoc Network

When & Where:


1 Eaton Hall

Committee Members:

Aveek Dutta, Chair
Victor Frost
Richard Wang


Abstract

High rate data transmission is very common in cellular and wireless local area networks. It is achievable because of its wired backbone where only the first or the last hop is wireless, commonly known as wireless “last-mile” link. With this type of infrastructure network, it is not surprising to achieve the desired performance of wirelessly-transmitted video. However, the current challenge is to transmit an enunciated and a high quality real time video over multiple wireless hops in an ad hoc network. The performance of multiple wireless hops to transmit a high quality video is limited by data rate, bandwidth of wireless channel and interference from adjacent channels. These factors constrain the applications for a wireless multihop network but are fundamental to military tactical network solutions. The project addresses and studies the effect of packet sensitivity, latency, bitrate and bandwidth on the quality of video for line of sight and non-line of sight test scenarios. It aims to achieve the best visual user experience at the receiver end on transmission over multiple wireless hops. Further, the project provides an algorithm for placement of drones in sub-terrain environment to stream real time videos for border surveillance to monitor and detect unauthorized activity.


YANG TIAN

Integrating Textual Ontology and Visual Features for Content Based Search in an Invertebrate Paleontology Knowledgebase

When & Where:


246 Nichols Hall

Committee Members:

Bo Luo, Chair
Fengjun Li
Richard Wang


Abstract

The Treatise on Invertebrate Paleontology (TIP) is a definitive work completed by more than 300 authors in the field of Paleontology, covering all categories of invertebrate animals. The digital version for TIP is consisted of multiple PDF files, however, these files are just a clone of paper version and are not well formatted, which makes it hard to extract structured data using only straightforward methods. In order to make fossil and extant records in TIP organized and searchable from a web interface, a digital library which is called Invertebrate Paleontology Knowledgebase (IPKB) was built for information sharing and querying in TIP. It is consisted of a database which stores records of all fossils and extant invertebrate animals, and a web interface which provides an online access. 
The existing IPKB system provides a general framework for TIP information showing and searching, however, it has very limited search functions, only allowing users querying by pure text. Details of structural properties in the fossil descriptions are not carefully taken into consideration. Moreover, sometimes users cannot provide correct and rich enough query terms. Although authors of TIP are all paleontologists, the expected users of IPKB may not be that professional. 
In order to overcome this limitation and bring more powerful search features into the IPKB system, in this thesis, we present a content-based search function, which allow users to search using textual ontology descriptions and images of fossils. First, this thesis describes the work done by previous research on IPKB system. Except for the original text and image processing approaches, we also present our new efforts on improving these original methods. Second, this thesis presents the algorithm and approach adopted in the construction of content-based search system for IPKB. The search functions in the old IPKB system did not consider the differences among morphological details of certain regions of fossils. Three major parts are discussed in detail: (1) Textual ontology based search. (2) Image based search. (3) Text-image based search. 


ANIL PEDIREDLA

Information Revelation and Privacy in Online Social Networks

When & Where:


250 Nichols Hall

Committee Members:

Bo Luo, Chair
Fengjun Li
Richard Wang


Abstract

Participation in social networking sites has dramatically increased in recent years. Services such as Linkedin, Facebook, or Twitter allow millions of individuals to create online profiles and share personal information with vast networks of friends - and, often, unknown numbers of strangers. The relation between privacy and a person’s social network is multi-faced. At certain occasions we want information about ourselves to be know only to a limited set of people, and not to strangers. Privacy implications associated with online social networking depend on the level of identifiability of the information provided, its possible recipients, and its possible uses. Even social networking websites that do not openly expose their users’ identities may provide enough information to identify profile’s owner. 


SERGIO LEON CUEN

Visualization and Performance Analysis of N-Body Dynamics Comparing GPGPU Approaches

When & Where:


2001B Eaton Hall

Committee Members:

Jim Miller, Chair
Man Kong
Suzanne Shontz


Abstract

With the advent of general-purpose programming tools and newer GPUs, programmers now have access to a more flexible general-purpose approach to using GPUs for something other than graphics. With single instruction stream, multiple data streams (SIMD), the same instruction is executed by multiple processors using different data streams. GPUs are SIMD computers that exploit data-level parallelism by applying the same operations to multiple items of data in parallel. There are many areas where GPUs can be used for general-purpose computing. We have chosen to focus on a project in the astrophysics area of scientific computing called N-body simulation which computes the evolution of a system of bodies that interact with each other. Each body represents an object such as a planet or a star, and each exerts a gravitational force on all the others. It is performed by using a numerical integration method to compute the interactions among the system of bodies, and begins with the initial conditions of the system which are the masses and starting position and velocity of every body. These data are repeatedly used to compute the gravitational force between all bodies of the system to show updates on screen. We investigate alternative implementation approaches to the problem in an attempt to determine the factors that maximize its performance, including speed and accuracy. Specifically, we compare an OpenCL approach to one based on using OpenGL Compute Shaders. We select these two for comparison to generate real-time interactive displays with OpenGL. Ultimately, we anticipate our results will be generalizable to other APIs (e.g., CUDA) as well as to applications other than the N-Body problem. A comparison of various numerical integration and memory optimization techniques is also included in our analysis in an attempt to understand how they work in the SIMD GPGPU environment and how they contribute to our performance metrics. We conclude that, for our particular implementation of the problem, taking advantage of efficiently using local memory considerably increases performance.


BHARGHAVA DESU

VIN Database Application to Assist National Highway Traffic Safety Agency

When & Where:


246 Nichols Hall

Committee Members:

Prasad Kulkarni, Chair
Andy Gill
Richard Wang


Abstract

The number of vehicle manufacturers and the number of vehicles produced have been significantly increasing each year. With more vehicles on road, the number of accidents on the National Highways in the US increased notably. NHTSA (National Highway Traffic Safety Agency) is a federal agency which works towards preventing vehicle crashes and their attendant costs. They plan and execute several operations and control measures to find and solve the problems causing accidents. One such initiative is to analyze the primary causes of all the vehicle crashes and maintain a streamlined data of vehicle Identification catalog customized for DOT and NHTSA. Maintaining a data on about 250+ millions of vehicles and analyze them needs a robust database and an application for its maintenance. At StrongBridge Corporation, we developed VPICLIST, an application for NHTSA to assist their analytic projects with data entry and pattern decoding of VIN information catalog. The application employs precise pattern matching techniques to dump data into distributed databases which in turn collaborate to a central database of NHTSA. It allows decoding of VIN each at a time by the public and also decoding thousands of VINS simultaneously for internal use of NHTSA. To hold and operate upon several PBs of data, insertion and retrieval process of the application emulates a distributed architecture. The application is developed in Java and uses Oracle enterprise database for distributed small collections and NoSQL system for the central database.


VENKATA SUBRAMANYA HYMA YADAVALLI

Framework for Shear Wave Velocity 2D Profiling with Topography

When & Where:


246 Nichols Hall

Committee Members:

Prasad Kulkarni, Chair
Perry Alexander
Heechul Yun


Abstract

The study of shear wave velocity (Vs) of near surface materials has been one of the primary areas of interest in seismic analyses. ‘Vs’ serves as the best indicator in evaluating the stiffness of a material from its shear modulus. One of the economical methods to obtain Vs profiling information is through the analysis of dispersion property of surface waves. SurfSeis4 - Software developed by the Kansas Geological Survey (KGS) utilizes Multichannel Analysis of Surface Waves (MASW) method to obtain shear wave velocity 2D (Surface location and depth) profiling. The profiling information is obtained in the form of a grid through inversion of dispersion curves. The Vs 2D map module of SurfSeis4, integrates the functionality of interpolating this grid to approximate the variation of shear wave velocity across the surface locations. The current project is an extension of the existing SurfSeis4 Vs 2D mapping module in its latest release of SurfSeis5 that incorporates topography in shear wave velocity variation and facilitates users with advanced image interpolation options.


LIYAO WANG

High Current Switch for Switching Power Supplies

When & Where:


2001B Eaton Hall

Committee Members:

Jim Stiles, Chair
Chris Allen
Glenn Prescott


Abstract

One of the main components in switching power supply is switch. However, there are two main negative issues the switch will cause in a switching power supply. The first one is that the power dissipation of the switch will be unimaginable high, especially when the current go through the switch gets higher. Secondly, because there are so many parasitic inductances and capacitances in the circuit, transient will cause problems when the operating state of the switch changes. In this project, P-Spice is used to design a qualify swith and suppress the negative effect as much as possible. The purpose of this project is to design a switch for hardware design in switching power supplies. Therefore, all the components used in P-Spice simulation are the actual models which is able to get from electronic market, and all the situations which may be happen in hardware design will be consider in the simulation. Both Mosfet and bipolar transistor switch will be discussed in the project. The project will give solutions for reducing the power dissipation cause by the switch and transient problems.


MANOGNA BHEEMINENI

Implementation and Comparison of FSA Filters

When & Where:


246 Nichols Hall

Committee Members:

Fengjun Li, Chair
Victor Frost
Bo Luo


Abstract

Packet Filtering is a process of filtering the packets based on the filters rules that are being defines by the user. The focus of this project is to implement and compare the performance of two different packet filtering techniques (SFSA and PFSA), that uses FSA(finite state automaton) for the filtering process. Stateless FSA(SFSA) is a packet filtering technique where an FSA is generated based on the input packet and the filtering criteria. Then succeed early algorithm is applied to the automaton which simplifies by the automaton by shortening long trails to the the final state which reduces the packet filtering time. It also uses transition compaction algorithm which helps in avoiding certain areas in packet inspection which are not necessary for packet filtering. 
PFSA (predicates of FSA) does the filtering based on predicates generated by the predicate evaluator. In this filtering process the FSA generated as state transitions which depend on the input symbol and also the predicate value. In order to simplify the FSA algorithms like predicates Cartesian product and predicates anticipation algorithms are being used. These algorithms consider all states that are possible and merge them to make the FSA deterministic. There is also a proto FSA that is being generated for the predicates to speed up the filtering process.