Defense Notices


All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Andrew Riachi

An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux Smaps

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Prasad Kulkarni, Chair
Perry Alexander
Drew Davidson
Heechul Yun

Abstract

Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.

In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.


Elizabeth Wyss

A New Frontier for Software Security: Diving Deep into npm

When & Where:


Eaton Hall, Room 2001B

Committee Members:

Drew Davidson, Chair
Alex Bardas
Fengjun Li
Bo Luo
J. Walker

Abstract

Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week. 

However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.

This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains. 


Alfred Fontes

Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope Modulations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Patrick McCormick, Chair
Shannon Blunt
Jonathan Owen


Abstract

Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.

A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal. 

The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.


Qua Nguyen

Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless Communications

When & Where:


Zoom Defense, please email jgrisafe@ku.edu for link.

Committee Members:

Erik Perrins, Chair
Morteza Hashemi
Zijun Yao
Taejoon Kim
KC Kong

Abstract

This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.

In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.

The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.

This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.


Arin Dutta

Performance Analysis of Distributed Raman Amplification with Different Pumping Configurations

When & Where:


Nichols Hall, Room 246 (Executive Conference Room)

Committee Members:

Rongqing Hui, Chair
Morteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao

Abstract

As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.

Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.

The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.

As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research  is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.


Past Defense Notices

Dates

RAVALI GINJUPALLI

A Rule Checker and K-Fold Cross Validation for Incomplete Data Sets

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Gary Minden
Suzanne Shontz


Abstract

Rule induction is an important technique of data mining or machine learning. Knowledge is frequently expressed by rules in many areas of AI, including rule based expert systems. The machine learning/ data mining system LERS (Learning from Examples based on Rough Sets) induces a set of rules from examples and classifies new examples using the set of rules induced previously by LERS. LERS induces rules based on supervised learning. The MLEM2 algorithm is a rule induction algorithm in which rule induction, discretization, and handling missing attribute values are all conducted simultaneously. A rule checker is implemented to classify new cases using the rules induced by MLEM2 algorithm. MLEM2 algorithm induces certain and possible rule sets. Bucket Brigade algorithm is implemented to 
classify new examples. K-fold cross-validation technique is implemented to measure the performance of MLEM2 algorithm. The objective of this project is to find out the efficiency of the MLEM2 rule induction method for incomplete data set. 


DHWANI SAXENA

A Modification of the Characteristic Relation for Incomplete Data Sets

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Perry Alexander
Prasad Kulkarni


Abstract

Rough set theory is a popular approach for decision rule induction. However, it requires the objects in the information system to be completely described. Many real life data sets are incomplete, so we cannot directly apply rough set theory for rule induction. A characteristic relation is used to deal with incomplete information systems in which ‘do not care’ data coexist with lost data. There are scenarios in which two objects that do not have the same known value are indiscernible and on the other hand the two objects which have a lot of equivalent known values are very likely to be in different classes. To rectify such situations, a modification of the characteristic relation was introduced. This project implements rule induction from the modification of the characteristic relation for incomplete data sets.


AHMED SYED

Maximal Consistent Block Technique for Rule Acquisition in Incomplete Information Systems

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Perry Alexander
Prasad Kulkarni


Abstract

In this project, an idea of the maximal consistent block is applied to formulate a new approximation to a concept in incomplete data sets. The maximal consistent blocks have smaller cardinality compared to characteristic sets. Because of this, the generated upper approximations will be smaller in size. Two interpretations of missing attribute values are discussed: lost values and “do not care” conditions. Four incomplete data sets are used for experiments with varying levels of missing information. Maximal Consistent Blocks and Characteristics Sets are compared in terms of cardinality of lower and upper approximations. The next objective is to compare the decision rules induced and cases covered by both techniques. The experiments show that both techniques provide the same lower approximations for all the datasets with “do not care” conditions. The best results are achieved by maximal consistent blocks for upper approximations for three datasets.


AMUKTHA CHAKILAM

A Modified ID3 Algorithm for Continuous Numerical Attributes Using Cut Point Approach

When & Where:


2001B Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Perry Alexander
Prasad Kulkarni


Abstract

Data classification is a methodology of data mining used to organize data by relevant categories to obtain meaningful information. A model is generated from the input training set which is used to classify the test data into predetermined groups or classes. One of the most widely used models is a decision tree which uses a tree like structure to list all possible outcomes. Decision tree is an important predictive analysis method in Data Mining as it requires minimum effort from the users for data interpretation. 

This project implements ID3, an algorithm for building decision tree using information gain metric. Furthermore, through illustrating the basic ideas of ID3, this project also addresses the inefficiency of ID3 in handling continuous numerical attributes. A cut point approach is presented to discretize the numeric attributes into discrete intervals and enable ID3 functionality for them. Experiments show that such decision trees contain fewer number of nodes and branches in contrast to a tree obtained by basic ID3 algorithm. This modified algorithm can be used to classify real valued domains containing symbolic and numeric attributes with multiple discrete outcomes. 


LUKE DODGE

Rule Induction on Data Sets with Set-Value Attributes

When & Where:


1 Eaton Hall

Committee Members:

Jerzy Grzymala-Busse, Chair
Arvin Agah
Bo Luo


Abstract

Data sets may have instances where multiple values are possible which are described as set-value attributes. The established LEM2 algorithm does not handle data sets with set-value attributes. To solve this problem, a parallel approach was used during LEM2's execution to avoid preprocessing data. Changing the creation of characteristic sets and attribute-value blocks to include all values for each case allows LEM2 to induce rules on data sets with set-value attributes. The ability to create a single local covering for set-value data sets increases the variety of data LEM2 can process.


SIRISHA THIPPABHOTLA

Applying Machine Learning Algorithms for Predicting Gender based on Voice

When & Where:


1415A LEEP2

Committee Members:

Jerzy Grzymala-Busse, Chair
Prasad Kulkarni
Bo Luo


Abstract

Machine learning is being applied in many domains of research. One such research area is the automation of gender prediction. The goal of this project is to determine a person’s gender based on his/her voice. Although it may seem like a simple task for any human to recognize this, the difficulty lies in the process of training a computer to do this job for us. This project is implemented by training models based on input data of voice samples from both male and female voices. The voice samples considered were from different datasets, with varying frequencies, noise ratios etc. This input data is passed through various machine learning models, with/without parameter tuning, to compare results. A comparative analysis of multiple machine learning algorithms was conducted, and the prediction with the highest accuracy is displayed as output for the given input voice sample.

 

 


SUNDEEP GANJI

A Hybrid Web Application For Conducting In Class Quizzes

When & Where:


1415A LEEP2

Committee Members:

Prasad Kulkarni, Chair
Jerzy Grzymala-Busse
Gary Minden


Abstract

Every student comes to the class with a smart phone, and they are constantly distracted. It has become a tough challenge for the instructors to keep the students focused on the lectures. The idea of this project is to build a hybrid responsive web application which helps the instructors to post questions between their discussions. The students can give their responses through their smart phones instantly. This enables the instructor to analyze the understanding of the students on the current topic through various statistics which are generated instantly. The instructors can improve their teaching methods while the students who are less interactive can give their voice along with others in the class and check their understanding. 

This application allows the instructor to add or edit courses in their account, add students to their courses, create or edit quizzes beforehand, post questions in different formats to the students, and analyze results through various kinds of plots. On the otherhand, a Student can view the courses he is added in to by his/her instructor, submit his/her responses for the quizzes posted. This application simplifies the process of conducting in-class quizzes and offers the students and the instructors an enhanced classroom experience. 


ALI MAHMOOD

Design, Integration, and Deployment of UAS-borne HF/VHF Ice Depth Sounding Radar and Antenna System

When & Where:


317 Nichols Hall

Committee Members:

Carl Leuschen, Chair
Fernando Rodriguez-Morales
Chris Allen


Abstract

The dynamic thinning of fast-flowing glaciers is so poorly understood that its potential impact on sea level rise remains unpredictable. Therefore, there is a dire need to predict the behavior of these ice bodies by understanding their bed topography and basal conditions, particularly near their grounding lines (the limit between grounded ice and floating ice). The ability to detect previous VHF radar returns in some key glacier regions is limited by strong clutter caused by severe ice surface roughness, volume scatter, and increased attenuation induced by water inclusions and debris. 
The work completed in the context of this thesis encompasses the design, integration, and field testing of a new compact light-weight radar and antenna system suitable for low-frequency operation onboard Uninhabited Aerial Systems (UASs). Specifically, this thesis presents the development of two tapered dipole antennas compatible with a 4-meter wingspan UAS. The bow-tie shaped antenna resonates at 35 MHz, and the meandering and resistively loaded element radiates at 14 MHz. Also discussed are the methods and tools used to achieve the necessary bandwidth while mitigating the electromagnetic coupling between the antennas and on-board avionics in a fully populated UAS. The influence of EM coupling on the 14 MHz antenna was nominal due to relatively longer wavelength. However, its input impedance had to be modified by resistive loading in order to avoid high power reflections back to the transmitter. The antenna bandwidths were further enhanced by employing impedance matching networks that resulted in 17.3% and 7.1% bandwidths at 35 MHz and 14 MHz, respectively. 
Finally, a compact 4 lbs. system was validated during the 2013-2014 Antarctic deployment, which led to echo sounding of more challenging temperate ice in the Arctic Circle. The thesis provides results obtained from data collected during a field test campaign over the Russell glacier in Greenland compared with previous data obtained with a VHF depth sounder system operated onboard a manned aircraft. 

 

 


KELLY RODRIGUEZ

Analysis of Extracellular Recordings and Temporal Encoding in Delayed-Feedback Reservoir

When & Where:


1 Eaton Hall

Committee Members:

Yang Yi, Chair
Randolph Nudo
Shannon Blunt


Abstract

Technological advancements in analog and digital systems have enabled new approaches to study networks of physical and artificial neurons. In biological systems, a standard method to record neuronal activity is through cortically implanted micro electrode arrays (MEAs). As advances in hardware continue to push channel counts of commercial MEAs upwards, it becomes imperative to develop automatic methods for data acquisition and analysis with high accuracy and throughput. Reliable, low latency methods are critical in closed-loop neuroprosthetic paradigms such as spike-timing dependent applications where the activity of a single neuron triggers specific stimuli with millisecond precision. This work presents an adapted version of an online spike detection algorithm, previously employed successfully on in vitro recordings, that has been improved to work under more stringent in vivo environments subject to additional sources of variability and noise. The algorithm’s performance was compared with other commonly employed detection techniques for neural data on a newly developed and highly tunable extracellular recording model that features variable firing rates, adjustable SNRs, and multiple waveform characteristics. The testing framework was created from in vivo recordings collected during quiescence and electrical stimulation periods. The algorithm presents superior performance and efficiency in all evaluated conditions. Furthermore, we propose a methodology for online signal integrity analysis from MEA recordings and quantification of neuronal variability across different experimental settings. This work constitutes a stepping stone toward the creation of large scale neural data processing pipelines and aims to facilitate reproducibility in activity dependent experiments by offering a method for unifying various metrics calculated from single unit activity. Precise spike detection becomes crucial for experiments studying temporal in addition to rate coding mechanisms. To further study and exploit the potential of temporal coding, a delay-feedback-based reservoir (DFB) has been implemented in software. This artificial network is found to be capable of processing spikes encoded from a benchmark task with performance comparable to that of more complex networks. This work allows us to corroborate the capabilities of temporal coding in a minimally-complex system suitable for implementation in physical hardware and inclusion in low-power circuit applications where computational power is also necessary.

 

 


SALEH ESHTAIWI

A New Model Predictive Control Technique Based Maximum Power Point Tracking For Photovoltaic Systems

When & Where:


2001B Eaton Hall

Committee Members:

Reza Ahmadi, Chair
Chris Allen
Jerzy Grzymala-Busse
Ron Hui
Elaina Sutley

Abstract

The worldwide energy demand is being increased day by day, anticipated to increase for 48% from 2012 to 2040. The distributed generation (DG) including renewable energy resources such as wind and solar are part of the solution in terms of lowering electricity cost, power reliability, and environmental concerns and therefore must function efficiently. Designing a robust maximum power point tracking (MPPT) technique can ensure maximized energy harvesting from PV solar systems and increases conversion efficiency which is the significant hindrance for their growth. The maximum power point (MPP) varies with intrinsic and climate changes nonlinearly. Thus, MPPT methods are expected to seek the MPP regardless of the solar module and ambient changes. The proposed method is based on the concept of Model Predictive Control (MPC) with unique properties. MPC is a powerful class of controllers that uses a system modeling to predict future behavior and optimize performance objectives. Unlike the traditional techniques that are prone to lose a tracking direction and their consequences on the stability, the proposed technique treats the photovoltaic (PV) module as a plant and uses a digital observer for predicting the behavior of the PV module and tracking the MPP. Further, it unifies the simplicity of implementation, enhances the overall dynamics performance and is robust against atmosphere changes.