Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Andrew Riachi
An Investigation Into The Memory Consumption of Web Browsers and A Memory Profiling Tool Using Linux SmapsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Prasad Kulkarni, ChairPerry Alexander
Drew Davidson
Heechul Yun
Abstract
Web browsers are notorious for consuming large amounts of memory. Yet, they have become the dominant framework for writing GUIs because the web languages are ergonomic for programmers and have a cross-platform reach. These benefits are so enticing that even a large portion of mobile apps, which have to run on resource-constrained devices, are running a web browser under the hood. Therefore, it is important to keep the memory consumption of web browsers as low as practicable.
In this thesis, we investigate the memory consumption of web browsers, in particular, compared to applications written in native GUI frameworks. We introduce smaps-profiler, a tool to profile the overall memory consumption of Linux applications that can report memory usage other profilers simply do not measure. Using this tool, we conduct experiments which suggest that most of the extra memory usage compared to native applications could be due the size of the web browser program itself. We discuss our experiments and findings, and conclude that even more rigorous studies are needed to profile GUI applications.
Elizabeth Wyss
A New Frontier for Software Security: Diving Deep into npmWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairAlex Bardas
Fengjun Li
Bo Luo
J. Walker
Abstract
Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week.
However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.
This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.
Alfred Fontes
Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope ModulationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.
A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal.
The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.
Qua Nguyen
Hybrid Array and Privacy-Preserving Signaling Optimization for NextG Wireless CommunicationsWhen & Where:
Zoom Defense, please email jgrisafe@ku.edu for link.
Committee Members:
Erik Perrins, ChairMorteza Hashemi
Zijun Yao
Taejoon Kim
KC Kong
Abstract
This PhD research tackles two critical challenges in NextG wireless networks: hybrid precoder design for wideband sub-Terahertz (sub-THz) massive multiple-input multiple-output (MIMO) communications and privacy-preserving federated learning (FL) over wireless networks.
In the first part, we propose a novel hybrid precoding framework that integrates true-time delay (TTD) devices and phase shifters (PS) to counteract the beam squint effect - a significant challenge in the wideband sub-THz massive MIMO systems that leads to considerable loss in array gain. Unlike previous methods that only designed TTD values while fixed PS values and assuming unbounded time delay values, our approach jointly optimizes TTD and PS values under realistic time delays constraint. We determine the minimum number of TTD devices required to achieve a target array gain using our proposed approach. Then, we extend the framework to multi-user wideband systems and formulate a hybrid array optimization problem aiming to maximize the minimum data rate across users. This problem is decomposed into two sub-problems: fair subarray allocation, solved via continuous domain relaxation, and subarray gain maximization, addressed via a phase-domain transformation.
The second part focuses on preserving privacy in FL over wireless networks. First, we design a differentially-private FL algorithm that applies time-varying noise variance perturbation. Taking advantage of existing wireless channel noise, we jointly design differential privacy (DP) noise variances and users transmit power to resolve the tradeoffs between privacy and learning utility. Next, we tackle two critical challenges within FL networks: (i) privacy risks arising from model updates and (ii) reduced learning utility due to quantization heterogeneity. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. We approach to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that ensures a DP guarantee and minimal quantization distortion. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Lastly, inspired by the information-theoretic rate-distortion framework, a privacy-distortion tradeoff problem is formulated to minimize privacy loss under a given maximum allowable quantization distortion. The optimal solution to this problem is identified, revealing that the privacy loss decreases as the maximum allowable quantization distortion increases, and vice versa.
This research advances hybrid array optimization for wideband sub-THz massive MIMO and introduces novel algorithms for privacy-preserving quantized FL with diverse precision. These contributions enable high-throughput wideband MIMO communication systems and privacy-preserving AI-native designs, aligning with the performance and privacy protection demands of NextG networks.
Arin Dutta
Performance Analysis of Distributed Raman Amplification with Different Pumping ConfigurationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rongqing Hui, ChairMorteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao
Abstract
As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.
Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.
The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.
As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.
Past Defense Notices
YI JIA
Online Spectral Clustering on Network StreamsWhen & Where:
December 10, 2012
Committee Members:
Luke Huan, ChairSwapan Chakrabarti
Jerzy Grzymala-Busse
Bo Luo
Alfred Tat-Kei Ho
Abstract
Graph is an extremely useful representation of a wide variety of practical systems in data analysis. Recently, with the fast accumulation of stream data from various type of networks, significant research interests have arisen on spectral clustering for network streams (or evolving networks). Compared with the general spectral clustering problem, the data analysis of this new type of problems may have additional requirements, such as short processing time, scalability in distributed computing environments, and temporal variation tracking.
However, to design a spectral clustering method to satisfy these requirements certainly presents non-trivial efforts. There are three major challenges for the new algorithm design. The first challenge is online clustering computation. Most of the existing spectral methods on evolving networks are off-line methods, using standard eigensystem solvers such as the Lanczos method. It needs to re-compute solutions from scratch at each time point. The second challenge is the parallelization of algorithms. To parallelize such algorithms is non-trivial since standard eigen solvers are iterative algorithms and the number of iterations cannot be predetermined. The third challenge is the very limited existing work. In addition, there exists multiple limitations in the existing method, such as computational inefficiency on large similarity changes, the lack of sound theoretical basis, and the lack of effective way to handle accumulated approximate errors and large data variations over time.
In this thesis, we proposed a new online spectral graph clustering approach with a family of three novel spectrum approximation algorithms. Our algorithms incrementally update the eigenpairs in an online manner to improve the computational performance. Our approaches outperformed the existing method in computational efficiency and scalability while retaining competitive or even better clustering accuracy. We derived our spectrum approximation techniques GEPT and EEPT through formal theoretical analysis. The well-established matrix perturbation theory forms a solid theoretic foundation for our online clustering method. In addition, we discussed our preliminary work on approximate graph mining with evolutionary process, non-stationary Bayesian Network structure learning from non-stationary time series data, and Bayesian Network structure learning with text priors imposed by non-parametric hierarchical topic modeling.
HAYDER ALMOSA
Downlink Achievable Rate Analysis for FDD Massive MIMO SystemsWhen & Where:
250 Nichols Hall
Committee Members:
Lingjia Liu, ChairShannon Blunt
Ron Hui
Erik Perrins
Hongyi Cai
Abstract
Multiple-Input Multiple-Output (MIMO) systems with large-scale transmit antenna arrays, often called massive MIMO, is a very promising direction for 5G due to its ability to increase capacity and enhance both spectrum and energy efficiency. To get the benefit of massive MIMO system, accurate downlink channel state information at the transmitter (CSIT) is essential for downlink beamforming and resource allocation. Conventional approaches to obtain CSIT for FDD massive MIMO systems require downlink training and CSI feedback. However, such training will cause a large overhead for massive MIMO systems because of the large dimensionality of the channel matrix. In this research proposal, we propose an efficient downlink beamforming method to address the challenging of downlink training overhead. First, we design an efficient downlink beamforming method based on partial CSI. By exploiting the relationship between uplink (UL) DoAs and downlink (DL) DoDs, we derive an expression for estimated downlink DoDs, which will be used for downlink beamforming. Second, we derive an efficient downlink beamforming method based on downlink CSIT estimated at the BS. By exploiting the sparsity structure of downlink channel matrix, we develop an algorithm that select the best features from the measurement matrix to obtain efficient CSIT acquisition that can reduce the downlink training overhead compared with the conventional LS/MMSE estimators. In both cases, we compare the performance of our proposed beamforming method with traditional method in terms of downlink achievable rate and simulation results show that our proposed method outperform the traditional beamforming method.
ANDREW OZOR
Size Up: A Tool for Interactive Comparative Collection Analysis for Very Large Species CollectionsWhen & Where:
2001B Eaton Hall
Committee Members:
Jim Miller, ChairMan Kong
Brian Potetz
Abstract
BRYAN BANZ
A Framework for Model Development Using Dimension Reduction and Low-Cost Surrogate FunctionsWhen & Where:
2001B Eaton Hall
Committee Members:
James Miller, ChairArvin Agah
Jerzy Grzymala-Busse
Nancy Kinnersley
John Doveton*
Abstract
SUSANNA MOSLEH
Intelligent Interference Mitigation for Multi-cell Multi-user MIMO Networks with Limited FeedbackWhen & Where:
250 Nichols Hall
Committee Members:
Lingjia Liu, ChairVictor Frost
Ron Hui
Erik Perrins
Jian Li
Abstract
Nowadays, wireless communication are becoming so tightly integrated in our daily lives, especially with the global spread of laptops, tablets and smartphones. This has paved the way to dramatically increasing wireless network dimensions in terms of subscribers and amount of flowing data. With the rapidly growing data traffic, interference has become a major limitation in wireless networks. To deal with this issue and in order to increase the spectral efficiency of wireless networks, various interference mitigation techniques have been suggested among which interference alignment (IA) has been shown to significantly improve network performance. However, how to practically use IA to mitigate inter-cell interference in a downlink multi-cell multi-user MIMO networks still remains an open problem. Besides, more recently, the attention of researchers has been drawn to a new technique for improving the spectral efficiency, namely, massive/full dimension multiple-input multiple-output. Although massive MIMO/FD-MIMO brings a large diversity gain to the network, its practical implementation poses a research challenge. Moreover, new techniques that can mitigate interference impact in such systems remain unexplored. To address these challenges, this proposed research targets to 1) develop an IA technique for downlink multi-cell multi-user MIMO networks; 2) mathematically characterize the performance of IA with limited feedback; and 3) evaluate the performance analysis of IA technique (with/without limited feedback) in massive MIMO/FD-MIMO networks. Preliminary results show that IA with limited feedback significantly increase the spectral efficiency of downlink multi-cell multi-user MIMO networks.
RACHAD ATAT
Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and ApplicationsWhen & Where:
246 Nichols Hall
Committee Members:
Lingjia Liu, Chair; Yang Yi, Co-Chair , ChairShannon Blunt
Jim Rowland
James Sterbenz
Jin Feng
Abstract
Cyber-physical systems (CPS) are expected to revolutionize the world through a myriad of applications in health-care, disaster event applications, environmental management, vehicular networks, industrial automation, and so on. The continuous explosive increase in wireless data traffic, driven by the global rise of smartphones, tablets, video streaming, and online social networking applications along with the anticipated wide massive sensors deployments, will create a set of challenges to network providers, especially that future fifth generation (5G) cellular networks will help facilitate the enabling of CPS communications over current network infrastructure.
In this dissertation, we first provide an overview of CPS taxonomy along with its challenges from energy efficiency, security, and reliability. Then we present different tractable analytical solutions through different 5G technologies, such as device-to-device (D2D) communications, cell shrinking and offloading, in order to enable CPS traffic over cellular networks. These technologies also provide CPS with several benefits such as ubiquitous coverage, global connectivity, reliability and security. By tuning specific network parameters, the proposed solutions allow the achievement of balance and fairness in spectral efficiency and minimum achievable throughout among cellular users and CPS devices. To conclude, we present a CPS mobile-health application as a case study where security of the medical health cyber-physical space is discussed in details.
HAO CHEN
Mutual Information Accumulation over Wireless Networks:Fundamentals and ApplicationsWhen & Where:
250 Nichols Hall
Committee Members:
Lingjia Liu, ChairShannon Blunt
Victor Frost
Yang Yi
Zsolt Talata
Abstract
Future wireless networks will face a compound challenge of supporting large traffic volumes, providing ultra-reliable and low latency connections to ultra-dense mobile devices. To meet this challenge, various new technologies have been introduced among which mutual-information accumulation (MIA), an advanced physical (PHY) layer coding technique, has been shown to significantly improve the network performance. Since the PHY layer is the fundamental layer, MIA could potentially impact various network layers of a wireless network. Accordingly, the understanding of improving network design based on MIA is far from being fully developed. The purpose of this dissertation is to study the fundamental performance improvement of MIA over wireless networks and to apply these fundamental results to guide the design of practical systems, such as cognitive radio networks and massive machine type communication networks.
This dissertation includes three parts. The first part of this dissertation presents the fundamental analysis of the performance of MIA over wireless networks. To begin with, we first analyze the asymptotic performance of MIA in an infinite 2-dimensional(2-D) grid network. Then, we investigate the optimal routing in cognitive radio networks with MIA and derive the closed-form cooperative gain obtained by applying MIA in cognitive radio networks. Finally, we characterize the performance of MIA in random networks using tools from stochastic geometry.
The second and third part of this dissertation focuses on the application of MIA in cognitive radio networks and massive machine type communication networks. An optimization problem is formulated to identify the cooperative routing and optimal resources allocation to minimize the transmission delay in underlay cognitive radio networks with MIA. Efficient centralized as well as distributed algorithms are developed to solve this cross-layer optimization problem using the fundamental properties obtained in the first part of this dissertation. A new cooperative retransmission strategy is developed for massive MTC networks with MIA. Theoretical analysis of the new developed retransmission strategy is conducted using the same methodology developed in the fundamental part of this dissertation. Monte Carlo simulation results and numerical results are presented to verify our analysis as well as to show the performance improvement of our developed strategy.
HAMID MAHMOUDI
Modulated Model Predictive Control for Power Electronic ConvertersWhen & Where:
2001B Eaton Hall
Committee Members:
Reza Ahmadi, ChairChris Allen
Glenn Prescott
Alessandro Salandrino
Jim Stiles
Abstract
Advanced switching algorithms and modulation methods for power electronics converters controlled with model predictive control (MPC) strategies have been proposed in this work. The methods under study retain the advantage of conventional MPC methods in programing the nonlinear effects of the converter into the design calculations to improve the overall dynamic and steady state performance of the system and builds upon that by offering new modulation technique for MPC to minimize the voltage and current ripples through using a fixed switching frequency. The proposed method is easy to implement and provides flexibility to prioritize different objectives of the system against each other using the objective weighting factor. To demonstrate the effectiveness of the proposed method, it has been used to overcome the stability problems caused by a constant power load (CPL) in a multi converter system as a case study.
In addition, to further evaluate the merits of the proposed method, it has been used to control modular multilevel converters (MMCs) in voltage source converter-high voltage DC (VSC-HVDC) systems. The proposed method considers the nonlinear properties of the MMC into the design calculations while minimizing the line total harmonic distortion (THD), circulating current ripple and steady-state error by generating modulated switching signals with a fixed switching frequency. In this work, the predictive modeling of the MMC is provided. Next, the proposed control method is described. Then, the application of the proposed method to a MMC system is detailed. Experimental results from the systems under study illustrate the effectiveness of proposed strategies.
MD AMIMUL EHSAN
Enabling Technologies for 3D ICs: TSV Modeling and AnalysisWhen & Where:
246 Nichols Hall
Committee Members:
Yang Yi, ChairRon Hui
Lingjia Liu
Alessandro Salandrino
Judy Wu
Abstract
Through silicon via (TSV) based three-dimensional (3D) integrated circuit (IC) aims to stack and interconnect dies or wafers vertically. This forefront technology offers a promising near-term solution for further miniaturization and the performance improvement of electronic systems and follows a more than Moore strategy.
Along with the need for low-cost and high-yield process technology, the successful application of TSV technology requires further optimization of the TSV electrical modeling and design. In the millimeter wave (mmW) frequency range, the root mean square (rms) height of the TSV sidewall roughness is comparable to the skin depth and hence becomes a critical factor for TSV modeling and analysis. The impact of TSV sidewall roughness on electrical performance, such as the loss and impedance alteration in the mmW frequency range, is examined and analyzed following the second order small perturbation method. Then, an accurate and efficient electrical model for TSVs has been proposed considering the TSV sidewall roughness effect, the skin effect, and the metal oxide semiconductor (MOS) effect.
However, the emerging application of 3D integration involves an advanced bio-inspired computing system which is currently experiencing an explosion of interest. In neuromorphic computing, the high density membrane capacitor plays a key role in the synaptic signaling process, especially in the spike firing analog implementation of neurons. We proposed a novel 3D neuromorphic design architecture in which the redundant and dummy TSVs are reconfigured as membrane capacitors. This modification has been achieved by taking advantage of the metal insulator semiconductor (MIS) structure along the sidewall, strategically engineering the fixed oxide charges in depletion region surrounding the TSVs, and the addition of oxide layer around the bump without changing any process technology. Without increasing the circuit area, this reconfiguration of TSVs can result in substantial power consumption reduction and a significant boost to chip performance and efficiency. Also, depending on the availability of the TSVs, we proposed a novel CAD framework for TSV assignments based on the force-directed optimization and linear perturbation.
SANTOSH MALYALA
Estimation of Ice Basal Reflectivity of Byrd Glacier using RES DataWhen & Where:
317 Nichols Hall
Committee Members:
Carl Leuschen, ChairJilu Li
Chris Allen
John Paden
Abstract
Ice basal reflectivity is much needed for the determination of ice basal conditions and for the accurate modeling of ice sheet to estimate the future global mean sea level rise. Reflectivity values can be determined from the received radio echo sounding data if the power loss caused by different components along the two-way transmission of EM wave are accurately compensated.
For the large volume of received radio echo sounding data collected over Byrd glacier in 2011-2012 with multichannel radar, the spherical spreading loss caused due to two-way propagation, power reduction due to roughness and relative englacial attenuation are compensated to estimate the relative reflectivity values of the Byrd glacier.
In order to estimate the scattered incoherent power component due to roughness, the distributions of echo amplitudes returned from air-firn interface and from ice – bed interface are modeled to estimate RMS height variations. The englacial attenuation rate of wave for two-way propagation along the ice depth is modeled using the observed data. The estimated air-firn interface roughness parameters are relatively cross verified using the Neal’s method and with the correlations from the Landsat image mosaic of Antarctica. Estimated relative basal reflectivity values are validated using the cross-over analysis and abruptness index measurements. From the Byrd relative reflectivity map, the corresponding echograms at the locations of potential subglacial water systems are checked for the observable lake features.
The obtained results are checked for correlations with previously predicted lake locations and subglacial flow paths. While the results doesn’t exactly match with the previously identified locations with elevation changes, high relative reflectivity values are observed close to those locations, aligning exactly or close to previously predicted flow paths providing a new window into the hydrological network of the glacial. Relative reflectivity values are clustered to indicate the different potential basal conditions beneath the Byrd glacier