Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Elizabeth Wyss
A New Frontier for Software Security: Diving Deep into npmWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairAlex Bardas
Fengjun Li
Bo Luo
J. Walker
Abstract
Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week.
However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.
This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.
Alfred Fontes
Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope ModulationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.
A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal.
The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.
Arin Dutta
Performance Analysis of Distributed Raman Amplification with Different Pumping ConfigurationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rongqing Hui, ChairMorteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao
Abstract
As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.
Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.
The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.
As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.
Audrey Mockenhaupt
Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target RecognitionWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jon Owen
Abstract
Pending.
Rich Simeon
Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry ApplicationsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Erik Perrins, ChairShannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin
Abstract
The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.
A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.
Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.
Mohammad Ful Hossain Seikh
AAFIYA: Antenna Analysis in Frequency-domain for Impedance and Yield AssessmentWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Jim Stiles, ChairRachel Jarvis
Alessandro Salandrino
Abstract
This project presents AAFIYA (Antenna Analysis in Frequency-domain for Impedance and Yield Assessment), a modular Python toolkit developed to automate and streamline the characterization and analysis of radiofrequency (RF) antennas using both measurement and simulation data. Motivated by the need for reproducible, flexible, and publication-ready workflows in modern antenna research, AAFIYA provides comprehensive support for all major antenna metrics, including S-parameters, impedance, gain and beam patterns, polarization purity, and calibration-based yield estimation. The toolkit features robust data ingestion from standard formats (such as Touchstone files and beam pattern text files), vectorized computation of RF metrics, and high-quality plotting utilities suitable for scientific publication.
Validation was carried out using measurements from industry-standard electromagnetic anechoic chamber setups involving both Log Periodic Dipole Array (LPDA) reference antennas and Askaryan Radio Array (ARA) Bottom Vertically Polarized (BVPol) antennas, covering a frequency range of 50–1500 MHz. Key performance metrics, such as broadband impedance matching, S11 and S21 related calculations, 3D realized gain patterns, vector effective lengths, and cross-polarization ratio, were extracted and compared against full-wave electromagnetic simulations (using HFSS and WIPL-D). The results demonstrate close agreement between measurement and simulation, confirming the reliability of the workflow and calibration methodology.
AAFIYA’s open-source, extensible design enables rapid adaptation to new experiments and provides a foundation for future integration with machine learning and evolutionary optimization algorithms. This work not only delivers a validated toolkit for antenna research and pedagogy but also sets the stage for next-generation approaches in automated antenna design, optimization, and performance analysis.
Soumya Baddham
Battling Toxicity: A Comparative Analysis of Machine Learning Models for Content ModerationWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Hongyang Sun
Abstract
With the exponential growth of user-generated content, online platforms face unprecedented challenges in moderating toxic and harmful comments. Due to this, Automated content moderation has emerged as a critical application of machine learning, enabling platforms to ensure user safety and maintain community standards. Despite its importance, challenges such as severe class imbalance, contextual ambiguity, and the diverse nature of toxic language often compromise moderation accuracy, leading to biased classification performance.
This project presents a comparative analysis of machine learning approaches for a Multi-Label Toxic Comment Classification System using the Toxic Comment Classification dataset from Kaggle. The study examines the performance of traditional algorithms, such as Logistic Regression, Random Forest, and XGBoost, alongside deep architectures, including Bi-LSTM, CNN-Bi-LSTM, and DistilBERT. The proposed approach utilizes word-level embeddings across all models and examines the effects of architectural enhancements, hyperparameter optimization, and advanced training strategies on model robustness and predictive accuracy.
The study emphasizes the significance of loss function optimization and threshold adjustment strategies in improving the detection of minority classes. The comparative results reveal distinct performance trade-offs across model architectures, with transformer models achieving superior contextual understanding at the cost of computational complexity. At the same time, deep learning approaches(LSTM models) offer efficiency advantages. These findings establish evidence-based guidelines for model selection in real-world content moderation systems, striking a balance between accuracy requirements and operational constraints.
Past Defense Notices
Ragib Shakil Rafi
Nonlinearity Assisted Mie Scattering from NanoparticlesWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Alessandro Salandrino, ChairShima Fardad
Morteza Hashemi
Rongqing Hui
Judy Wu
Abstract
Scattering by nanoparticles is an exciting branch of physics to control and manipulate light. More specifically, there have been fascinating developments regarding light scattering by sub-wavelength particles, including high-index dielectric and metal particles, for their applications in optical resonance phenomena, detecting the fluorescence of molecules, enhancing Raman scattering, transferring the energy to the higher order modes, sensing and photodetector technologies. It recently gained more attention due to its near-field effect at the nanoscale and achieving new insights and applications through space and time-varying parametric modulation and including nonlinear effects. When the particle size is comparable to or slightly bigger than the incident wavelength, Mie solutions to Maxwell's equations describe these electromagnetic scattering problems. The addition and excitation of nonlinear effects in these high-indexed sub-wavelength dielectric and plasmonic particles might improve the existing performance of the system or provide additional features directed toward unique applications. In this thesis, we study the Mie scattering from dielectric and plasmonic particles in the presence of nonlinear effects. For dielectrics, we present a numerical study of the linear and nonlinear diffraction and focusing properties of dielectric metasurfaces consisting of silicon microcylinder arrays resting on a silicon substrate. Upon diffraction, such structures lead to the formation of near-field intensity profiles reminiscent of photonic nanojets and propagate similarly. Our results indicate that the Kerr nonlinear effect enhances light concentration throughout the generated photonic jet with an increase in the intensity of about 20% compared to the linear regime for the power levels considered in this work. The transverse beamwidth remains subwavelength in all cases, and the nonlinear effect reduces the full width. In the future, we want to optimize the performance through parametric modification of the system and continue our study with plasmonic structures in time–varying scenarios. We hope that with appropriate parametric modulation, intermodal energy transfer is possible in such structures. We want to explore the nonlinear excitation to transfer energy in higher-order modes by exploiting different wave-mixing interactions in time-modulated scatterers.
Anna Fritz
Negotiating Remote Attestation ProtocolsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Perry Alexander, ChairAlex Bardas
Drew Davidson
Fengjun Li
Emily Witt
Abstract
During remote attestation, a relying party prompts a target to perform some stateful measurement which can be appraised to determine trust in the target's system. In this current framework, requested measurement operations must be provisioned by a knowledgeable system user who may fail to consider situational demands which potentially impact the desired measurement. To solve this problem, we introduce negotiation: a framework that allows the target and relying party to mutually determine an attestation protocol that satisfies both the target's need to protect sensitive information and the relying party's desire for a comprehensive measurement. We designed and verified this negotiation procedure such that for all negotiations, we can provably produce an executable protocol that satisfies the targets privacy standards. With the remainder of this work, we aim to realize and instantiate protocol orderings ensuring negotiation produces a protocol sufficient for the relying party. All progress is towards our ultimate goal of producing a working, fully verified negotiation scheme which will be integrated into our current attestation framework for flexible, end-to-end attestations.
Paul Gomes
A framework for embedding hybrid term proximity score with standard TF-IDF to improve the performance of recipe retrieval systemWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairDavid Johnson
Hongyang Sun
Abstract
Information retrieval system plays an important role in the modern era in retrieving relevant information from a large collection of data, such as documents, webpages, and other multimedia content. Having an information retrieval system in any domain allows users to collect relevant information. Unfortunately, navigating a modern-day recipe website presents the audience with numerous recipes in a colorful user interface but with very little capability to search and narrow down your content based on your specific interests. The goal of the project is to develop a search engine for recipes using standard TF-IDF weighting and to improve the performance of the standard IR by implementing term proximity. The approach used to calculate term proximity in this project is a hybrid approach, a combination of span-based and pair-based approaches. The project architecture includes a crawler, a database, an API, a service responsible for TF-IDF weighting and term proximity calculation, and a web application to present the search results.
Anjali Pare
Exploring Errors in Binary-Level CFG RecoveryWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairFengjun Li
Bo Luo
Abstract
The control-flow graph (CFG) is a graphical representation of the program and holds information that is critical to the correct application of many other program analysis, performance optimization, and software security algorithms and techniques. While CFG generation is an ordinary task for source-level tools, like the compiler, the loss of high-level program information makes accurate CFG recovery a challenging issue for binary-level software reverse engineering (SRE) tools. Earlier research has shown that while advanced SRE tools can precisely reconstruct most of the CFG for the programs, important gaps and inaccuracies remain that may hamper critical tasks, from vulnerability and malicious code detection to adequately securing software binaries.
In this paper, we study three reverse engineering tools - angr, radare2 and Ghidra and perform an in-depth analysis of control-flow graphs generated by these tools. We develop a unique methodology using manual analysis and automated scripting to understand and categorize the CFG errors over a large benchmark set. Of the several interesting observations revealed by this work, one that is particularly unexpected is that most errors in the reconstructed CFGs appear to not be intrinsic limitations of the binary-level algorithms, as currently believed, and may be simply eliminated by more robust implementations. We expect our work to lead to more accurate CFG reconstruction in SRE tools and improved precision for other algorithms that employ CFGs.
Kailani Jones
Security Operation Centers: Analyzing COVID-19's Work-from-Home Influence on Endpoint Management and Developing a Sociotechnical Metrics FrameworkWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Alex Bardas, ChairDrew Davidson
Fengjun Li
Bo Luo
John Symons
Abstract
Security Operations Centers (SOCs) are central components of modern enterprise networks. Organizations in industry, government, and academia deploy SOCs to manage their networks, defend against cyber threats, and maintain regulatory compliance. For reporting, SOC leadership typically use metrics such as “number of security incidents”, “mean time to remediation/ticket closure”, and “risk analysis” to name a few. However, these commonly leveraged metrics may not necessarily reflect the effectiveness of a SOC and its supporting tools.
To better understand these environments, we employ ethnographic approaches (e.g., participant observation) and embed a graduate student (a.k.a., field worker) in a real-world SOC. As the field worker worked in-person, alongside SOC employees and recorded observations on technological tools, employees and culture, COVID-19's work-from-home (WFH) phenomena occurred. In response, this dissertation traces and analyzes the SOC's effort to adapt and reprioritize. By intersecting historical analysis (starting in the 1970s) and ethnographic field notes (analyzed 352 field notes across 1,000+ hours in a SOC over 34 months) whilst complementing with quantitative interviews (covering 7 other SOCs), we find additional causal forces that, for decades, have pushed SOC network management toward endpoints.
Although endpoint management is not a novel concept to SOCs, COVID-19's WFH phenomena highlighted the need for flexible, supportive, and customizable metrics. As such, we develop a sociotechnical metrics framework with these qualities in mind and limit the scope to a core SOC function: alert handling. With a similar ethnographic approach (participant observation paired with semi-structured interviews covering 15 SOC employees across 10 SOCs), we develop the framework's foundation by analyzing and capturing the alert handling process (a.k.a., alert triage). This process demonstrates the significance of not only technical expertise (e.g., data exfiltration, command and control, etc.) but also the social characteristics (e.g., collaboration, communication, etc.). In fact, we point out the underlying presence and importance of expert judgment during alert triaging particularly during conclusion development.
In addition to the aforementioned qualities, our alert handling sociotechnical metrics framework aims to capture current gaps during the alert triage process that, if improved, could help SOC employees' effectiveness. With the focus upon this process and the uncovered limitations SOCs usually face today during alert handling, we validate not only this flexibility of our framework but also the accuracy in a real-world SOC
Gordon Ariho
MULTIPASS SAR PROCESSING FOR ICE SHEET VERTICAL VELOCITY AND TOMOGRAPHY MEASUREMENTSWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
James Stiles, ChairJohn Paden (Co-Chair)
Christopher Allen
Shannon Blunt
Emily Arnold
Abstract
We apply differential interferometric synthetic aperture radar (DInSAR) techniques to data from the Multichannel Coherent Radar Depth Sounder (MCoRDS) to measure the vertical displacement of englacial layers within an ice sheet. DInSAR’s accuracy is usually on the order of a small fraction of the wavelength (e.g., millimeter to centimeter precision is typical) in monitoring displacement along the radar line of sight (LOS). Ground-based Autonomous phase-sensitive Radio-Echo Sounder (ApRES) units have demonstrated the ability to precisely measure the relative vertical velocity by taking multiple measurements from the same location on the ice. Airborne systems can make a similar measurement but can suffer from spatial baseline errors since it is generally impossible to fly over the same stretch of ice on each pass with enough precision to ignore the spatial baseline. In this work, we compensate for spatial baseline errors using precise trajectory information and estimates of the cross-track layer slope using direction of arrival estimation. The current DInSAR algorithm is applied to airborne radar depth sounder data to produce results for flights near Summit camp and the EGIG (Expéditions Glaciologiques Internationales au Groenland) line in Greenland using the CReSIS toolbox. The current approach estimates the baseline error in multiple steps. Each step has dependencies on all the values to be estimated. To overcome this drawback, we have implemented a maximum likelihood estimator that jointly estimates the vertical velocity, the cross-track internal layer slope, and the unknown baseline error due to GPS and INS (Inertial Navigation System) errors. We incorporate the Lliboutry parametric model for vertical velocity into the maximum likelihood estimator framework.
To improve the direction of arrival estimation, we explore the use of focusing matrices against other wideband direction of arrival methods, such as wideband MLE, wideband MUSIC, and wideband MVDR, by comparing the mean squared error of the DOA estimates.
Dalton Brucker-Hahn
Mishaps in Microservices: Improving Microservice Architecture Security Through Novel Service Mesh CapabilitiesWhen & Where:
Nichols Hall, Room 129, Ron Evans Apollo Auditorium
Committee Members:
Alex Bardas, ChairDrew Davidson
Fengjun Li
Bo Luo
Huazhen Fang
Abstract
Shifting trends in modern software engineering and cloud computing have pushed system designs to leverage containerization and develop their systems into microservice architectures. While microservice architectures emphasize scalability and ease-of-development, the issue of microservice explosion has emerged, stressing hosting environments and generating new challenges within this domain. Service meshes, the latest in a series of developments, are being adopted to meet these needs. Service meshes provide separation of concerns between microservice development and the operational concerns of microservice deployments, such as service discovery and networking. However, despite the benefits provided by service meshes, the security demands of this domain are unmet by the current state-of-art offerings.
Through a series of experimental trials in a service mesh testbed, we demonstrate a need for improved security mechanisms in the state-of-art offerings of service meshes. After deriving a series of domain-conscious recommendations to improve the longevity and flexibility of service meshes, we design and implement our proof-of-concept service mesh system ServiceWatch. By leveraging a novel verification-in-the-loop scheme, we provide the capability for service meshes to provide holistic monitoring and management of the microservice deployments they host. Further, through frequent, automated rotations of security artifacts (keys, certificates, and tokens), we allow the service mesh to automatically isolate and remove microservices that violate the defined network policies of the service mesh, requiring no system administrator intervention. Extending this proof-of-concept environment, we design and implement a prototype workflow called CloudCover. CloudCover incorporates our verification-in-the-loop scheme and leverages existing tools, allowing easy adoption of these novel security mechanisms into modern systems. Under a realistic and relevant threat model, we show how our design choices and improvements are both necessary and beneficial to real-world deployments. By examining network packet captures, we provide a theoretical analysis of the scalability of these solutions in real-world networks. We further extend these trials experimentally using an independently managed and operated cloud environment to demonstrate the practical scalability of our proposed designs to large-scale software systems. Our results indicate that the overhead introduced by ServiceWatch and CloudCover are acceptable for real-world deployments. Additionally, the security capabilities provided effectively mitigate threats present within these environments.
Hara Madhav Talasila
Radiometric Calibration of Radar Depth Sounder Data ProductsWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
Carl Leuschen, ChairJohn Paden (Co-Chair)
Christopher Allen
James Stiles
Jilu Li
Abstract
Although the Center for Remote Sensing of Ice Sheets (CReSIS) performs several radar calibration steps to produce Operation IceBridge (OIB) radar depth sounder data products, these datasets are not radiometrically calibrated and the swath array processing uses ideal (rather than measured [calibrated]) steering vectors. Any errors in the steering vectors, which describe the response of the radar as a function of arrival angle, will lead to errors in positioning and backscatter that subsequently affect estimates of basal conditions, ice thickness, and radar attenuation. Scientific applications that estimate physical characteristics of surface and subsurface targets from the backscatter are limited with the current data because it is not absolutely calibrated. Moreover, changes in instrument hardware and processing methods for OIB over the last decade affect the quality of inter-seasonal comparisons. Recent methods which interpret basal conditions and calculate radar attenuation using CReSIS OIB 2D radar depth sounder echograms are forced to use relative scattering power, rather than absolute methods.
As an active target calibration is not possible for past field seasons, a method that uses natural targets will be developed. Unsaturated natural target returns from smooth sea-ice leads or lakes are imaged in many datasets and have known scattering responses. The proposed method forms a system of linear equations with the recorded scattering signatures from these known targets, scattering signatures from crossing flight paths, and the radiometric correction terms. A least squares solution to optimize the radiometric correction terms is calculated, which minimizes the error function representing the mismatch in expected and measured scattering. The new correction terms will be used to correct the remaining mission data. The radar depth sounder data from all OIB campaigns can be reprocessed to produce absolutely calibrated echograms for the Arctic and Antarctic. A software simulator will be developed to study calibration errors and verify the calibration software. The software for processing natural targets will be made available in CReSIS’s open-source polar radar software toolbox. The OIB data will be reprocessed with new calibration terms, providing to the data user community a complete set of radiometrically calibrated radar echograms for the CReSIS OIB radar depth sounder for the first time.
Justinas Lialys
Parametrically Resonant Surface Plasmon PolaritonsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Alessandro Salandrino, ChairKenneth Demarest
Shima Fardad
Rongqing Hui
Xinmai Yang
Abstract
The surface electromagnetic waves that propagate along a metal-dielectric or a metal-air interface are called surface plasmon polaritons (SPPs). However, as the tangential wavevector component is larger than what is permitted for the homogenous plane wave in the dielectric medium this poses a phase-matching issue. In other words, the available spatial vector in the dielectric at a given frequency is smaller than what is required by SPP to be excited. The most commonly known technique to bypass this problem is by using the Otto and Kretschmann configurations. A glass prism is used to increase the available spatial vector in dielectric/air. Other methods are evanescent field directional coupling and optical grating. Even with all these methods, it is still challenging to couple the SPPs having a large propagation constant.
A novel way to efficiently inject the power into SPPs is via temporal modulation of the dielectric adhered to the metal. The dielectric constant is modulated in time using an incident pump field. As a result of the induced changes in the dielectric constant, spatial vector shortage is eliminated. In other words, there is enough spatial vector in the dielectric to excite SPPs. As SPPs applicability is widely studied in numerous applications, this method gives a new way of evoking SPPs. Hence, this technique opens new possibilities in the surface plasmon polariton study. One of the applications that we discuss in details is the optical limiting.
Thomas Kramer
Time-Frequency Analysis of Waveform Diverse DesignsWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
Shannon Blunt, ChairVictor Frost
James Stiles
Abstract
Waveform diversity desires to optimize the Radar waveform given the constraints and objectives of a particular task or scenario. Recent advances in electronics have significantly expanded the design space of waveforms. The resulting waveforms of various waveform diverse approaches possess complex structures which have temporal, spectral, and spatial extents. The utilization of optimization in many of these approaches results in complex signal structures that are not imagined a priori, but are instead the product of algorithms. Traditional waveform analysis using the frequency spectrum, autocorrelation, and beampatterns of waveforms provide the majority of metrics of interest. But as these new waveforms’ structure increases in complexity, and the constraints of their use tighten, further aspects of the waveform’s structure must be considered, especially the true occupancy of the waveforms in the transmission hyperspace. Time-Frequency analysis can be applied to these waveforms to better understand their behavior and to inform future design. These tools are especially useful for spectrally shaped random FM waveforms as well as spatially shaped spatial beams. Both linear and quadratic transforms are used to study the emissions in time, frequency, and space dimensions. Insight on waveform generation is observed and future design opportunities are identified.