Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Elizabeth Wyss
A New Frontier for Software Security: Diving Deep into npmWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairAlex Bardas
Fengjun Li
Bo Luo
J. Walker
Abstract
Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week.
However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.
This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.
Alfred Fontes
Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope ModulationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.
A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal.
The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.
Arin Dutta
Performance Analysis of Distributed Raman Amplification with Different Pumping ConfigurationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rongqing Hui, ChairMorteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao
Abstract
As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.
Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.
The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.
As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.
Audrey Mockenhaupt
Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target RecognitionWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jon Owen
Abstract
Pending.
Rich Simeon
Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry ApplicationsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Erik Perrins, ChairShannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin
Abstract
The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.
A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.
Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.
Mohammad Ful Hossain Seikh
AAFIYA: Antenna Analysis in Frequency-domain for Impedance and Yield AssessmentWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Jim Stiles, ChairRachel Jarvis
Alessandro Salandrino
Abstract
This project presents AAFIYA (Antenna Analysis in Frequency-domain for Impedance and Yield Assessment), a modular Python toolkit developed to automate and streamline the characterization and analysis of radiofrequency (RF) antennas using both measurement and simulation data. Motivated by the need for reproducible, flexible, and publication-ready workflows in modern antenna research, AAFIYA provides comprehensive support for all major antenna metrics, including S-parameters, impedance, gain and beam patterns, polarization purity, and calibration-based yield estimation. The toolkit features robust data ingestion from standard formats (such as Touchstone files and beam pattern text files), vectorized computation of RF metrics, and high-quality plotting utilities suitable for scientific publication.
Validation was carried out using measurements from industry-standard electromagnetic anechoic chamber setups involving both Log Periodic Dipole Array (LPDA) reference antennas and Askaryan Radio Array (ARA) Bottom Vertically Polarized (BVPol) antennas, covering a frequency range of 50–1500 MHz. Key performance metrics, such as broadband impedance matching, S11 and S21 related calculations, 3D realized gain patterns, vector effective lengths, and cross-polarization ratio, were extracted and compared against full-wave electromagnetic simulations (using HFSS and WIPL-D). The results demonstrate close agreement between measurement and simulation, confirming the reliability of the workflow and calibration methodology.
AAFIYA’s open-source, extensible design enables rapid adaptation to new experiments and provides a foundation for future integration with machine learning and evolutionary optimization algorithms. This work not only delivers a validated toolkit for antenna research and pedagogy but also sets the stage for next-generation approaches in automated antenna design, optimization, and performance analysis.
Soumya Baddham
Battling Toxicity: A Comparative Analysis of Machine Learning Models for Content ModerationWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Hongyang Sun
Abstract
With the exponential growth of user-generated content, online platforms face unprecedented challenges in moderating toxic and harmful comments. Due to this, Automated content moderation has emerged as a critical application of machine learning, enabling platforms to ensure user safety and maintain community standards. Despite its importance, challenges such as severe class imbalance, contextual ambiguity, and the diverse nature of toxic language often compromise moderation accuracy, leading to biased classification performance.
This project presents a comparative analysis of machine learning approaches for a Multi-Label Toxic Comment Classification System using the Toxic Comment Classification dataset from Kaggle. The study examines the performance of traditional algorithms, such as Logistic Regression, Random Forest, and XGBoost, alongside deep architectures, including Bi-LSTM, CNN-Bi-LSTM, and DistilBERT. The proposed approach utilizes word-level embeddings across all models and examines the effects of architectural enhancements, hyperparameter optimization, and advanced training strategies on model robustness and predictive accuracy.
The study emphasizes the significance of loss function optimization and threshold adjustment strategies in improving the detection of minority classes. The comparative results reveal distinct performance trade-offs across model architectures, with transformer models achieving superior contextual understanding at the cost of computational complexity. At the same time, deep learning approaches(LSTM models) offer efficiency advantages. These findings establish evidence-based guidelines for model selection in real-world content moderation systems, striking a balance between accuracy requirements and operational constraints.
Past Defense Notices
Jonathan Rogers
Faster than Thought Error Detection Using Machine Learning to Detect Errors in Brain Computer InterfacesWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Suzanne Shontz, ChairAdam Rouse
Cuncong Zhong
Abstract
This research thesis seeks to use machine learning on data from invasive brain-computer interfaces (BCIs) in rhesus macaques to predict their state of movement during center-out tasks. Our research team breaks down movements into discrete states and analyzes the data using Linear Discriminant Analysis (LDA). We find that a simplified model that ignores the biological systems unpinning it can still detect the discrete state changes with a high degree of accuracy. Furthermore, when we account for underlying systems, our model achieved high levels of accuracy at speeds that ought to be imperceptible to the primate brain.
Abigail Davidow
Exploring the Gap Between Privacy and Utility in Automated Decision-MakingWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairFengjun Li
Alexandra Kondyli
Abstract
The rapid rise of automated decision-making systems has left a gap in researchers’ understanding of how developers and consumers balance concerns about the privacy and accuracy of such systems against their utility. With our goal to cover a broad spectrum of concerns from various angles, we initiated two experiments on the perceived benefit and detriment of interacting with automated decision-making systems. We refer to these two experiments as the Patch Wave study and Automated Driving study. This work approaches the study of automated decision making at different perspectives to help address the gap in empirical data on consumer and developer concerns. In our Patch Wave study, we focus on developers’ interactions with automated pull requests that patch widespread vulnerabilities on GitHub. The Automated Driving study explores older adults’ perceptions of data privacy in highly automated vehicles. We find quantitative and qualitative differences in the way that our target populations view automated decision-making systems compared to human decision-making. In this work, we detail our methodology for these studies, experimental results, and recommendations for addressing consumer and developer concerns.
Bhuneshwari Sharma Joshi
Applying ML Models for the Analysis of Bankruptcy PredictionWhen & Where:
Zoom Meeting, please email jgrisafe@ku.edu for defense link.
Committee Members:
Prasad Kulkarni, ChairDrew Davidson
David Johnson
Abstract
Bankruptcy prediction helps to evaluate the financial condition of a company and it helps not only the policymakers but the investors and all concerned people so they can take all required steps to avoid or to reduce the after-effects of bankruptcy. Bankruptcy prediction will not only help in making the best decision but also provides insight to reduce losses. The major reasons for the business organization’s failure are due to economic conditions such as proper allocation of resources, Input to policymakers, appropriate steps for business managers, identification of sector-wide problems, too much debt, insufficient capital, signal to Investors, etc. These factors can lead to making business unsustainable. The failure rate of businesses has tended to fluctuate with the state of the economy. The area of corporate bankruptcy prediction attains high economic importance, as it affects many stakeholders. The prediction of corporate bankruptcy has been extensively studied in economics, accounting, banking, and decision sciences over the past two decades. Many traditional approaches were suggested based on hypothesis testing and statistical analysis. Therefore, our focus and research are to come up with an approach that can estimate the probability of corporate bankruptcy and by evaluating its occurrence of failure using different machine learning models such as random forest, Random forest, XGboost, logistic method and choosing the one which gives highest accuracy. The dataset used was not well prepared and contained missing values, various data mining and data pre-processing techniques were utilized for data preparation. We use models such asRandom forest, Logistic method, random forest, XGBoost to predict corporate bankruptcy earlier to the occurrence. The accuracy results for accurate predictions of whether an organization will go bankrupt within the next 30, 90, or 180 days, using financial ratios as input features. The XGBoost-based model performs exceptionally well, with 98-99% accuracy.
Laurynas Lialys
Engineering laser beams for particle trapping, lattice formation and microscopyWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Shima Fardad, ChairMorteza Hashemi
Rongqing Hui
Alessandro Salandrino
Xinmai Yang
Abstract
Having control over nano- and micro-sized objects' position inside a suspension is crucial in many applications such as: sorting and delivery of particles, studying cells and microorganisms, spectroscopy imaging techniques, and building microscopic size lattices and artificial structures. This control can be achieved by judiciously engineering optical forces and light-matter interactions inside colloidal suspensions that result in optical trapping. However, in the current techniques, to confine and transport particles in 3D, the use of high-NA (Numerical Aperture) optics is a must. This in turn leads to several disadvantages such as alignment complications, lower trap stability, and undesirable thermal effects. Hence, here we study novel optical trapping methods such as asymmetric counter-propagating beams where we have engineered the optical forces to overcome the aforementioned limitations. This system is significantly easier to align as it uses much lower NA optics which creates a very flexible manipulating system. This new approach allows the trapping and transportation of different shape objects, sizing from hundreds of nanometers to hundreds of micrometers by exploiting asymmetrical optical fields with higher stability. In addition, this technique also allows for significantly longer particle trapping lengths of up to a few millimeters. As a result, we can apply this method to trapping much larger particles and microorganisms that have never been trapped optically before. Another application that the larger trapping lengths of the proposed system allow for is the creation of 3D lattices of microscopic size particles and other artificial structures, which is one important application of optical trapping.
This system can be used to create a fully reconfigurable medium by optically controlling the position of selected nano- and micro-sized dielectric and metallic particles to mimic a certain medium. This “table-top” emulation can significantly simplify our studies of wave-propagation phenomena on transmitted signals in the real world.
Furthermore, an important application of an optical tweezer system is that it can be combined with a variety of spectroscopy and microscopy techniques to extract valuable, time-sensitive information from trapped entities. In this research, I plan to integrate several spectroscopy techniques into the proposed trapping method in order to achieve higher-resolution images, especially for biomaterials such as microorganisms.
Michael Cooley
Machine Learning for Navel Discharge ReviewWhen & Where:
Eaton Hall, Room 1
Committee Members:
Prasad Kulkarni, ChairDavid Johnson (Co-Chair)
Jerzy Grzymala-Busse
Abstract
This research project aims to predict the outcome of the Naval Discharge Review Board decision for an applicant based on factors in the application, using Machine Learning techniques. The study explores three popular machine learning algorithms: MLP, Adaboost, and KNN, with KNN providing the best results. The training is verified through hyperparameter optimization and cross fold validation.
Additionally, the study investigates the ability of ChatGPT's API to classify the data that couldn't be classified manually. A total of over 8000 samples were classified by ChatGPT's API, and an MLP model was trained using the same hyperparameters that were found to be optimal for the 3000 size manual sample.The model was then tested on the manual sample. The results show that the model trained on data labeled by ChatGPT performed equivalently, suggesting that ChatGPT's API is a promising tool for labeling in this domain.
Vasudha Yenuganti
RNA Structure Annotation Based on Base Pairs Using ML Based ClassifiersWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Cuncong Zhong, ChairDavid Johnson
Prasad Kulkarni
Abstract
RNA molecules play a crucial role in the regulation of gene expression and other cellular processes. Understanding the three-dimensional structure of RNA is essential for predicting its function and interactions with other molecules. One key feature of RNA structure is the presence of base pairs, where nucleotides i.e., adenine(A), guanine(G), cytosine(C), and uracil(U), form hydrogen bonds with each other. The limited availability of high-quality RNA structural data combined with associated atomic coordinate errors in low resolution structures, presents significant challenges for extracting important geometrical characteristics from RNA's complex three-dimensional structure, particularly in terms of base interactions.
In this study, we propose an approach for annotating base-pairing interactions in low-resolution RNA structures using machine learning (ML) based classifiers and leveraging the more precise structural information available in high-resolution homologs to annotate base-pairing interactions in low-resolution structures. We first use DSSR tool to extract annotations of high-resolution RNA structures and extract distances of atoms of interacting base pairs. The distances serve as features, and 12 standard annotations are used as labels for our ML model. We then apply different ML classifiers, including support vector machines, neural networks, and random forests, to predict RNA annotations. We evaluate the performance of these classifiers using a benchmark dataset and report their precision, recall, and F1-score. Low-resolution RNA structures are then annotated based on the sequence-similarity with high-resolution structures and the corresponding predicted annotations.
For future aspects, the presented approach can also help to explore the plausible base pair interactions to identify conserved motifs in low-resolution structures. The detected interactions along with annotations can aid in the study of RNA tertiary structures, which can lead to a better understanding of their functions in the cell.
Venkata Nadha Reddy Karasani
Implementing Web Presence For The History Of Black WritingWhen & Where:
LEEP2, Room 1415
Committee Members:
Drew Davidson, ChairPerry Alexander
Hossein Saiedian
Abstract
The Black Literature Network Project is a comprehensive initiative to disseminate literature knowledge to students, academics, and the general public. It encompasses four distinct portals, each featuring content created and curated by scholars in the field. These portals include the Novel Generator Machine, Literary Data Gallery, Multithreaded Literary Briefs, and Remarkable Receptions Podcast Series. My significant contribution to this project was creating a standalone website for the Current Archives and Collections Index that offers an easily searchable index of black-themed collections. Additionally, I was exclusively responsible for the complete development of the novel generator tool. This application provides customized book recommendations based on user preferences. As a part of the History of Black Writing (HBW) Program, I had the opportunity to customize an open-source annotation tool called Hypothesis. This customization allowed for its use on all websites related to the Black Literature Network Project by the end users. The Black Book Interactive Project (BBIP) collaborates with institutions and groups nationwide to promote access to Black-authored texts and digital publishing. Through BBIP, we plan to increase black literature’s visibility in digital humanities research.
Michael Bechtel
Shared Resource Denial-of-Service Attacks on Multicore PlatformsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Heechul Yun, ChairMohammad Alian
Drew Davidson
Prasad Kulkarni
Shawn Keshmiri
Abstract
With the increased adoption of complex machine learning algorithms across many different fields, powerful computing platforms have become necessary to meet their computational needs. Multicore platforms are a popular choice as they provide greater computing capabilities and can still meet different size, weight, and power (SWaP) constraints. However, contention for shared hardware resources between multiple cores remains a significant challenge that can lead to interference and unpredictable timing behaviors. Furthermore, this contention can be intentionally induced by malicious actors with the specific goals of delaying safety-critical tasks and jeopardizing system safety. This is done by performing Denial-of-Service (DoS) attacks that target shared resources such that the other cores in a system are unable to access them. When done properly, these shared resource DoS attacks can significantly impact performance and threaten system stability. For example, DoS attacks can cause >300X slowdown on the popular Raspberry Pi 3 embedded platform.
Motivated by the inherent risks posed by these DoS attacks, this dissertation presents investigations and evaluations of shared resource contention on multicore platforms, and the impacts it can have on the performance of real-time tasks. We propose various DoS attacks that each target different shared resources in the memory hierarchy with the goal of causing as much slowdown as possible. We show that each attack can inflict significant temporal slowdowns to victim tasks on target platforms by exploiting different hardware and software mechanisms. We then develop and analyze techniques for providing shared resource isolation and temporal performance guarantees for safety-critical tasks running on multicore platforms. In particular, we find that bandwidth throttling mechanisms are effective solutions against most DoS attacks and can protect the performance of real-time victim tasks.
Sarah Johnson
Formal Analysis of TPM Key Certification ProtocolsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Perry Alexander, ChairMichael Branicky
Emily Witt
Abstract
Development and deployment of trusted systems often require definitive identification of devices. A remote entity should have confidence that a device is as it claims to be. An ideal method for fulfulling this need is through the use of secure device identitifiers. A secure device identifier (DevID) is defined as an identifier that is cryptographically bound to a device. A DevID must not be transferable from one device to another as that would allow distinct devices to be identified as the same. Since the Trusted Platform Module (TPM) is a secure Root of Trust for Storage, it provides the necessary protections for storing these identifiers. Consequently, the Trusted Computing Group (TCG) recommends the use of TPM keys for DevIDs. The TCG's specification TPM 2.0 Keys for Device Identity and Attestation describes several methods for remotely proving a key to be resident in a specific device's TPM. These methods are carefully constructed protocols which are intended to be performed by a trusted Certificate Authority (CA) in communication with a certificate-requesting device. DevID certificates produced by an OEM's CA at device manufacturing time may be used to provide definitive evidence to a remote entity that a key belongs to a specific device. Whereas DevID certificates produced by an Owner/Administrator's CA require a chain of certificates in order to verify a chain of trust to an OEM-provided root certificate. This distinction is due to the differences in the respective protocols prescribed by the TCG's specification. We aim to abstractly model these protocols and formally verify that their resulting assurances on TPM-residency do in fact hold. We choose this goal since the TCG themselves do not provide any proofs or clear justifications for how the protocols might provide these assurances. The resulting TPM-command library and execution relation modeled in Coq may easily be expanded upon to become useful in verifying a wide range of properties regarding DevIDs and TPMs.
Andrew Cousino
Recording Remote Attestations on the BlockchainWhen & Where:
Nichols Hall, Gemini Room
Committee Members:
Perry Alexander, ChairAlex Bardas
Drew Davidson
Abstract
Remote attestation is a process of establishing trust between various systems on a network. Until now, attestations had to be done on the fly as caching attestations had not yet been solved. With the blockchain providing a monotonic record, this work attempts to enable attestations to be cached. This paves the way for more complex attestation protocols to fit the wide variety of needs of users. We also developed specifications for these records to be cached on the blockchain.