Defense Notices
All students and faculty are welcome to attend the final defense of EECS graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.
Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.
Upcoming Defense Notices
Elizabeth Wyss
A New Frontier for Software Security: Diving Deep into npmWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairAlex Bardas
Fengjun Li
Bo Luo
J. Walker
Abstract
Open-source package managers (e.g., npm for Node.js) have become an established component of modern software development. Rather than creating applications from scratch, developers may employ modular software dependencies and frameworks--called packages--to serve as building blocks for writing larger applications. Package managers make this process easy. With a simple command line directive, developers are able to quickly fetch and install packages across vast open-source repositories. npm--the largest of such repositories--alone hosts millions of unique packages and serves billions of package downloads each week.
However, the widespread code sharing resulting from open-source package managers also presents novel security implications. Vulnerable or malicious code hiding deep within package dependency trees can be leveraged downstream to attack both software developers and the end-users of their applications. This downstream flow of software dependencies--dubbed the software supply chain--is critical to secure.
This research provides a deep dive into the npm-centric software supply chain, exploring distinctive phenomena that impact its overall security and usability. Such factors include (i) hidden code clones--which may stealthily propagate known vulnerabilities, (ii) install-time attacks enabled by unmediated installation scripts, (iii) hard-coded URLs residing in package code, (iv) the impacts of open-source development practices, (v) package compromise via malicious updates, (vi) spammers disseminating phishing links within package metadata, and (vii) abuse of cryptocurrency protocols designed to reward the creators of high-impact packages. For each facet, tooling is presented to identify and/or mitigate potential security impacts. Ultimately, it is our hope that this research fosters greater awareness, deeper understanding, and further efforts to forge a new frontier for the security of modern software supply chains.
Alfred Fontes
Optimization and Trade-Space Analysis of Pulsed Radar-Communication Waveforms using Constant Envelope ModulationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jonathan Owen
Abstract
Dual function radar communications (DFRC) is a method of co-designing a single radio frequency system to perform simultaneous radar and communications service. DFRC is ultimately a compromise between radar sensing performance and communications data throughput due to the conflicting requirements between the sensing and information-bearing signals.
A novel waveform-based DFRC approach is phase attached radar communications (PARC), where a communications signal is embedded onto a radar pulse via the phase modulation between the two signals. The PARC framework is used here in a new waveform design technique that designs the radar component of a PARC signal to match the PARC DFRC waveform expected power spectral density (PSD) to a desired spectral template. This provides better control over the PARC signal spectrum, which mitigates the issue of PARC radar performance degradation from spectral growth due to the communications signal.
The characteristics of optimized PARC waveforms are then analyzed to establish a trade-space between radar and communications performance within a PARC DFRC scenario. This is done by sampling the DFRC trade-space continuum with waveforms that contain a varying degree of communications bandwidth, from a pure radar waveform (no embedded communications) to a pure communications waveform (no radar component). Radar performance, which is degraded by range sidelobe modulation (RSM) from the communications signal randomness, is measured from the PARC signal variance across pulses; data throughput is established as the communications performance metric. Comparing the values of these two measures as a function of communications symbol rate explores the trade-offs in performance between radar and communications with optimized PARC waveforms.
Arin Dutta
Performance Analysis of Distributed Raman Amplification with Different Pumping ConfigurationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Rongqing Hui, ChairMorteza Hashemi
Rachel Jarvis
Alessandro Salandrino
Hui Zhao
Abstract
As internet services like high-definition videos, cloud computing, and artificial intelligence keep growing, optical networks need to keep up with the demand for more capacity. Optical amplifiers play a crucial role in offsetting fiber loss and enabling long-distance wavelength division multiplexing (WDM) transmission in high-capacity systems. Various methods have been proposed to enhance the capacity and reach of fiber communication systems, including advanced modulation formats, dense wavelength division multiplexing (DWDM) over ultra-wide bands, space-division multiplexing, and high-performance digital signal processing (DSP) technologies. To maintain higher data rates along with maximizing the spectral efficiency of multi-level modulated signals, a higher Optical Signal-to-Noise Ratio (OSNR) is necessary. Despite advancements in coherent optical communication systems, the spectral efficiency of multi-level modulated signals is ultimately constrained by fiber nonlinearity. Raman amplification is an attractive solution for wide-band amplification with low noise figures in multi-band systems.
Distributed Raman Amplification (DRA) have been deployed in recent high-capacity transmission experiments to achieve a relatively flat signal power distribution along the optical path and offers the unique advantage of using conventional low-loss silica fibers as the gain medium, effectively transforming passive optical fibers into active or amplifying waveguides. Also, DRA provides gain at any wavelength by selecting the appropriate pump wavelength, enabling operation in signal bands outside the Erbium doped fiber amplifier (EDFA) bands. Forward (FW) Raman pumping configuration in DRA can be adopted to further improve the DRA performance as it is more efficient in OSNR improvement because the optical noise is generated near the beginning of the fiber span and attenuated along the fiber. Dual-order FW pumping scheme helps to reduce the non-linear effect of the optical signal and improves OSNR by more uniformly distributing the Raman gain along the transmission span.
The major concern with Forward Distributed Raman Amplification (FW DRA) is the fluctuation in pump power, known as relative intensity noise (RIN), which transfers from the pump laser to both the intensity and phase of the transmitted optical signal as they propagate in the same direction. Additionally, another concern of FW DRA is the rise in signal optical power near the start of the fiber span, leading to an increase in the non-linear phase shift of the signal. These factors, including RIN transfer-induced noise and non-linear noise, contribute to the degradation of system performance in FW DRA systems at the receiver.
As the performance of DRA with backward pumping is well understood with relatively low impact of RIN transfer, our research is focused on the FW pumping configuration, and is intended to provide a comprehensive analysis on the system performance impact of dual order FW Raman pumping, including signal intensity and phase noise induced by the RINs of both 1st and the 2nd order pump lasers, as well as the impacts of linear and nonlinear noise. The efficiencies of pump RIN to signal intensity and phase noise transfer are theoretically analyzed and experimentally verified by applying a shallow intensity modulation to the pump laser to mimic the RIN. The results indicate that the efficiency of the 2nd order pump RIN to signal phase noise transfer can be more than 2 orders of magnitude higher than that from the 1st order pump. Then the performance of the dual order FW Raman configurations is compared with that of single order Raman pumping to understand trade-offs of system parameters. The nonlinear interference (NLI) noise is analyzed to study the overall OSNR improvement when employing a 2nd order Raman pump. Finally, a DWDM system with 16-QAM modulation is used as an example to investigate the benefit of DRA with dual order Raman pumping and with different pump RIN levels. We also consider a DRA system using a 1st order incoherent pump together with a 2nd order coherent pump. Although dual order FW pumping corresponds to a slight increase of linear amplified spontaneous emission (ASE) compared to using only a 1st order pump, its major advantage comes from the reduction of nonlinear interference noise in a DWDM system. Because the RIN of the 2nd order pump has much higher impact than that of the 1st order pump, there should be more stringent requirement on the RIN of the 2nd order pump laser when dual order FW pumping scheme is used for DRA for efficient fiber-optic communication. Also, the result of system performance analysis reveals that higher baud rate systems, like those operating at 100Gbaud, are less affected by pump laser RIN due to the low-pass characteristics of the transfer of pump RIN to signal phase noise.
Audrey Mockenhaupt
Using Dual Function Radar Communication Waveforms for Synthetic Aperture Radar Automatic Target RecognitionWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairShannon Blunt
Jon Owen
Abstract
Pending.
Rich Simeon
Delay-Doppler Channel Estimation for High-Speed Aeronautical Mobile Telemetry ApplicationsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Erik Perrins, ChairShannon Blunt
Morteza Hashemi
Jim Stiles
Craig McLaughlin
Abstract
The next generation of digital communications systems aims to operate in high-Doppler environments such as high-speed trains and non-terrestrial networks that utilize satellites in low-Earth orbit. Current generation systems use Orthogonal Frequency Division Multiplexing modulation which is known to suffer from inter-carrier interference (ICI) when different channel paths have dissimilar Doppler shifts.
A new Orthogonal Time Frequency Space (OTFS) modulation (also known as Delay-Doppler modulation) is proposed as a candidate modulation for 6G networks that is resilient to ICI. To date, OTFS demodulation designs have focused on the use cases of popular urban terrestrial channel models where path delay spread is a fraction of the OTFS symbol duration. However, wireless wide-area networks that operate in the aeronautical mobile telemetry (AMT) space can have large path delay spreads due to reflections from distant geographic features. This presents problems for existing channel estimation techniques which assume a small maximum expected channel delay, since data transmission is paused to sound the channel by an amount equal to twice the maximum channel delay. The dropout in data contributes to a reduction in spectral efficiency.
Our research addresses OTFS limitations in the AMT use case. We start with an exemplary OTFS framework with parameters optimized for AMT. Following system design, we focus on two distinct areas to improve OTFS performance in the AMT environment. First we propose a new channel estimation technique using a pilot signal superimposed over data that can measure large delay spread channels with no penalty in spectral efficiency. A successive interference cancellation algorithm is used to iteratively improve channel estimates and jointly decode data. A second aspect of our research aims to equalize in delay-Doppler space. In the delay-Doppler paradigm, the rapid channel variations seen in the time-frequency domain is transformed into a sparse quasi-stationary channel in the delay-Doppler domain. We propose to use machine learning using Gaussian Process Regression to take advantage of the sparse and stationary channel and learn the channel parameters to compensate for the effects of fractional Doppler in which simpler channel estimation techniques cannot mitigate. Both areas of research can advance the robustness of OTFS across all communications systems.
Mohammad Ful Hossain Seikh
AAFIYA: Antenna Analysis in Frequency-domain for Impedance and Yield AssessmentWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Jim Stiles, ChairRachel Jarvis
Alessandro Salandrino
Abstract
This project presents AAFIYA (Antenna Analysis in Frequency-domain for Impedance and Yield Assessment), a modular Python toolkit developed to automate and streamline the characterization and analysis of radiofrequency (RF) antennas using both measurement and simulation data. Motivated by the need for reproducible, flexible, and publication-ready workflows in modern antenna research, AAFIYA provides comprehensive support for all major antenna metrics, including S-parameters, impedance, gain and beam patterns, polarization purity, and calibration-based yield estimation. The toolkit features robust data ingestion from standard formats (such as Touchstone files and beam pattern text files), vectorized computation of RF metrics, and high-quality plotting utilities suitable for scientific publication.
Validation was carried out using measurements from industry-standard electromagnetic anechoic chamber setups involving both Log Periodic Dipole Array (LPDA) reference antennas and Askaryan Radio Array (ARA) Bottom Vertically Polarized (BVPol) antennas, covering a frequency range of 50–1500 MHz. Key performance metrics, such as broadband impedance matching, S11 and S21 related calculations, 3D realized gain patterns, vector effective lengths, and cross-polarization ratio, were extracted and compared against full-wave electromagnetic simulations (using HFSS and WIPL-D). The results demonstrate close agreement between measurement and simulation, confirming the reliability of the workflow and calibration methodology.
AAFIYA’s open-source, extensible design enables rapid adaptation to new experiments and provides a foundation for future integration with machine learning and evolutionary optimization algorithms. This work not only delivers a validated toolkit for antenna research and pedagogy but also sets the stage for next-generation approaches in automated antenna design, optimization, and performance analysis.
Soumya Baddham
Battling Toxicity: A Comparative Analysis of Machine Learning Models for Content ModerationWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
David Johnson, ChairPrasad Kulkarni
Hongyang Sun
Abstract
With the exponential growth of user-generated content, online platforms face unprecedented challenges in moderating toxic and harmful comments. Due to this, Automated content moderation has emerged as a critical application of machine learning, enabling platforms to ensure user safety and maintain community standards. Despite its importance, challenges such as severe class imbalance, contextual ambiguity, and the diverse nature of toxic language often compromise moderation accuracy, leading to biased classification performance.
This project presents a comparative analysis of machine learning approaches for a Multi-Label Toxic Comment Classification System using the Toxic Comment Classification dataset from Kaggle. The study examines the performance of traditional algorithms, such as Logistic Regression, Random Forest, and XGBoost, alongside deep architectures, including Bi-LSTM, CNN-Bi-LSTM, and DistilBERT. The proposed approach utilizes word-level embeddings across all models and examines the effects of architectural enhancements, hyperparameter optimization, and advanced training strategies on model robustness and predictive accuracy.
The study emphasizes the significance of loss function optimization and threshold adjustment strategies in improving the detection of minority classes. The comparative results reveal distinct performance trade-offs across model architectures, with transformer models achieving superior contextual understanding at the cost of computational complexity. At the same time, deep learning approaches(LSTM models) offer efficiency advantages. These findings establish evidence-based guidelines for model selection in real-world content moderation systems, striking a balance between accuracy requirements and operational constraints.
Past Defense Notices
Ahmet Soyyigit
Anytime Computing Techniques for Lidar-Based Perception in Cyber-Physical SystemsWhen & Where:
Nichols Hall, Room 317 (Richard K. Moore Conference Room)
Committee Members:
Heechul Yun, ChairMichael Branicky
Prasad Kulkarni
Hongyang Sun
Shawn Keshmiri
Abstract
The pursuit of autonomy in cyber-physical systems (CPS) presents a challenging task of real-time interaction with the physical world, prompting extensive research in this domain. Recent advancements in artificial intelligence (AI), particularly the introduction of deep neural networks (DNNs), have significantly enhanced CPS autonomy, notably boosting perception capabilities.
CPS perception aims to discern, classify, and track the objects of interest in the operational environment, a task considerably challenging for computers in three-dimensional (3D) space. For this task of detecting objects, leveraging lidar sensors and processing their readings with deep neural networks (DNN) has become popular due to their excellent performance.
However, in systems like self-driving cars and drones, object detection must be both accurate and timely, posing a challenge due to the high computational demand of lidar object detection DNNs. Furthermore, lidar object detection DNNs lack the capability to dynamically reduce their execution time by compromising accuracy (i.e. anytime computing). This adaptability is crucial since deadline constraints can change based on the operational environment and the internal status of the system.
Prior research aimed at anytime computing for object detection DNNs using camera images are not applicable when considered to lidar-based detection due to architectural differences. Addressing this challenge, this thesis focuses on proposing novel techniques, such as Anytime-Lidar and VALO (Versatile Anytime Lidar Object Detection). These innovations aim to enable lidar-based object detection DNNs to make effective tradeoffs between latency and accuracy. Finally, the thesis aims to integrate the proposed anytime object detection techniques into unmanned aerial vehicles and introduce a system-level scheduler capable of managing multiple anytime computation capable tasks.
Andrew Mertz
Multiple Input Single Output (MISO) Receive Processing Techniques for Linear Frequency Modulated Continuous Wave Frequency Diverse Array (LFMCW-FDA) Transmit StructuresWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Patrick McCormick, ChairChris Allen
Shannon Blunt
James Stiles
Abstract
This thesis focuses on the multiple processing techniques that can be applied to a single receive element co-located with a Frequency Diverse Array (FDA) transmission structure that illuminates a large volume to estimate the scattering characteristics of objects within the illuminated space in the range, Doppler, and spatial dimensions. FDA transmissions consist of a number of evenly spaced transmitting elements all of which are radiating a linear frequency modulated (LFM) waveform. The elements are configured into a Uniform Linear Array (ULA) and the waveform of each element is separated by a frequency spacing across the elements where the time duration of the chirp is inversely proportional to an integer multiple of the frequency spacing between elements. The complex transmission structure created by this arrangement of multiple transmitting elements can be received and processed by a single receive element. Furthermore, multiple receive processing techniques, each with their own advantages and disadvantages, can be applied to the data received from the single receive element to estimate the range, velocity, and spatial direction of targets in the illuminated volume relative to the co-located transmit array and receive element. Three different receive processing techniques that can be applied to FDA transmissions are explored. Two of these techniques are novel to this thesis, including the spatial matched filter processing technique for FDA transmission structures, and stretch processing using virtual array processing for FDA transmissions. Additionally, this thesis introduces a new type of FDA transmission structure referred to as ”slow-time” FDA.
Sameera Katamaneni
Revolutionizing Forensic Identification: A Dual-Method Facial Recognition Paradigm for Enhanced Criminal IdentificationWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairHongyang Sun
Abstract
In response to the challenges posed by increasingly sophisticated criminal behaviour that strategically evades conventional identification methods, this research advocates for a paradigm shift in forensic practices. Departing from reliance on traditional biometric techniques such as DNA matching, eyewitness accounts, and fingerprint analysis, the study introduces a pioneering biometric approach centered on facial recognition systems. Addressing the limitations of established methods, the proposed methodology integrates two key components. Firstly, facial features are meticulously extracted using the Histogram of Oriented Gradients (HOG) methodology, providing a robust representation of individualized facial characteristics. Subsequently, a face recognition system is implemented, harnessing the power of the K-Nearest Neighbours machine learning classifier. This innovative dual-method approach aims to significantly enhance the accuracy and reliability of criminal identification, particularly in scenarios where conventional methods prove inadequate. By capitalizing on the inherent uniqueness of facial features, this research strives to introduce a formidable tool for forensic practitioners, offering a more effective means of addressing the evolving landscape of criminal tactics and safeguarding the integrity of justice systems.
Thomas Atkins
Secure and Auditable Academic Collections Storage via Hyperledger Fabric-Based Smart ContractsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Drew Davidson, ChairFengjun Li
Bo Luo
Abstract
This paper introduces a novel approach to manage collections of artifacts through smart contract access control, rooted in on-chain role-based property-level access control. This smart contract facilitates the lifecycle of these artifacts including allowing for the creation, modification, removal, and historical auditing of the artifacts through both direct and suggested actions. This method introduces a collection object designed to store role privileges concerning state object properties. User roles are defined within an on-chain entity that maps users' signed identities to roles across different collections, enabling a single user to assume varying roles in distinct collections. Unlike existing key-level endorsement mechanisms, this approach offers finer-grained privileges by defining them on a per-property basis, not at the key level. The outcome is a more flexible and fine-grained access control system seamlessly integrated into the smart contract itself, empowering administrators to manage access with precision and adaptability across diverse organizational contexts. This has the added benefit of allowing for the auditing of not only the history of the artifacts, but also for the permissions granted to the users.
Christian Jones
Robust and Efficient Structure-Based Radar Receive ProcessingWhen & Where:
Nichols Hall, Room 129 (Apollo Auditorium)
Committee Members:
Shannon Blunt, ChairChris Allen
Suzanne Shontz
James Stiles
Zsolt Talata
Abstract
Legacy radar systems largely rely on repeated emission of a linear frequency modulated (LFM) or chirp waveform to ascertain scattering information from an environment. The prevalence of these chirp waveforms largely stems from their simplicity to generate, process, and the general robustness they provide towards hardware effects. However, this traditional design philosophy often lacks the flexibility and dimensionality needed to address the dynamic “complexification” of the modern radio frequency (RF) environment or achieve current operational requirements where unprecedented degrees of sensitivity, maneuverability, and adaptability are necessary.
Over the last couple of decades analog-to-digital and digital-to-analog technologies have advanced exponentially, resulting in tremendous design degrees of freedom and arbitrary waveform generation (AWG) capabilities that enable sophisticated design of emissions to better suit operational requirements. However, radar systems typically require high powered amplifiers (HPA) to contend with the two-way propagation. Thus, transmitter-amenable waveforms are effectively constrained to be both spectrally contained and constant amplitude, resulting in a non-convex NP-hard design problem.
While determining the global optimal waveform can be intractable for even modest time-bandwidth products (TB), locally optimal transmitter-amenable solutions that are “good enough” are often readily available. However, traditional matched filtering may not satisfy operational requirements for these sub-optimal emissions. Using knowledge of the transmitter-receiver chain, a discrete linear model can be formed to express the relationship between observed measurements and the complex scattering of the environment. This structured representation then enables more sophisticated least-square and adaptive estimation techniques to better satisfy operational needs, improve estimate fidelity, and extend dynamic range.
However, radar dimensionality can be enormous and brute force implementations of these techniques may have unwieldy computational burden on even cutting-edge hardware. Additionally, a discrete linear representation is fundamentally an approximation of the dynamic continuous physical reality and model errors may induce bias, create false detections, and limit dynamic range. As such, these structure-based approaches must be both computationally efficient and robust to reality.
Here several generalized discrete radar receive models and structure-based estimation schemes are introduced. Modifications and alternative solutions are then proposed to improve estimate fidelity, reduce computational complexity, and provide further robustness to model uncertainty.
Shawn Robertson
A secure framework for at risk populations in austere environments utilizing Bluetooth Mesh communicationsWhen & Where:
Nichols Hall, Room 246 (Executive Conference Room)
Committee Members:
Alex Bardas, ChairDrew Davidson
Fengjun Li
Bo Luo
Huazhen Fang
Abstract
Austere environments are defined by the US Military as those regularly experiencing significant environmental hazards, have limited access to reliable electricity, or require prolonged use of body armor or chemical protection equipment. We propose that in modern society, this definition can extend also to telecommunications infrastructure, areas where an active adversary controls the telecommunications infrastructure and works against the people such as protest areas in Iran, Russia, and China or areas experiencing conflict and war such as Eastern Ukraine. People in these austere environments need basic text communications and the ability to share simple media like low resolution pictures. This communication is complicated by the adversaries’ capabilities as a potential nation-state actor. To address this, Low Earth Orbit satellite clusters, like Starlink, can be used to exfiltrate communications completely independent of local infrastructure. This, however, creates another issue as these satellite ground terminals are not inherently designed to support many users over a large area. Traditional means of extending this connectivity create both power and security concerns. We propose that Bluetooth Mesh can be used to extend connectivity and provide communications.
Bluetooth Mesh provides a low signal footprint to reduce the risk of detection, blends into existent signals within the 2.4ghz spectrum, has security aspects in the specification, and devices can utilize small batteries maintaining a covert form factor. To realize this security enhancements must be made to both the provisioning process of the Bluetooth Mesh network and a key management scheme that ensures the regular and secure changing of keys either in response to an adversary’s action or as a prevention of an adversary’s action must be implemented. We propose a provisioning process using whitelists on both provisioner and device and uses attestation for passwords allowing devices to be provisioned on deployment to protect the at-risk population and prevent BlueMirror attacks. We also propose, implement, and measure the impact of an automated key exchange that meets the Bluetooth Mesh 3 phase specification. Our experimentation, in a field environment, shows that Bluetooth Mesh has the throughput, reliability and security to meet the requirements of at-risk populations in austere environments.
Venkata Mounika Keerthi
Evaluating Dynamic Resource Management for Bulk Synchronous Parallel ApplicationsWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Hongyang Sun, ChairDavid Johnson
Prasad Kulkarni
Abstract
Bulk Synchronous Parallel (BSP) applications comprise distributed tasks that synchronize at periodic intervals, known as supersteps. Efficient resource management is critical for the performance of BSP applications, especially when deployed on multi-tenant cloud platforms. This project evaluates and extends some existing resource management algorithms for BSP applications, while focusing on dynamic schedulers to mitigate stragglers under variable workloads. In particular, a Dynamic Window algorithm is implemented to compute resource configurations optimized over a customizable timeframe by considering workload variability. The algorithm applies a discount factor prioritizing improvements in earlier supersteps to account for increasing prediction errors in future supersteps. It represents a more flexible approach compared to the Static Window algorithm that recomputes the resource configuration after a fixed number of supersteps. A comparative evaluation of the Dynamic Window algorithm against existing techniques, including the Static Window algorithm, a Dynamic Model Predictive Control (MPC) algorithm, and a Reinforcement Learning (RL) based algorithm, is performed to quantify potential reductions in application duration resulting from enhanced superstep-level customization. Further evaluations also show the impacts of window size and checkpoint (reconfiguration) cost on these algorithms, gaining insights into their dynamics and performance trade-offs.
Degree: MS Project Defense (CS)
Sohan Chandra
Predicting inorganic nitrogen content in the soil using Machine LearningWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Taejoon Kim, ChairPrasad Kulkarni
Cuncong Zhong
Abstract
This ground-breaking project addresses a critical issue in crop production: precisely determining plant-available inorganic nitrogen (IN) in soil to optimize fertilization strategies. Current methodologies frequently struggle with the complexities of determining a soil's nitrogen content, resorting to approximations and labor-intensive soil testing procedures that can lead to the pitfalls of under or over-fertilization, endangering agricultural productivity. Recognizing the scarcity of historical inorganic nitrogen (IN) data, this solution employs a novel approach that employs Generative Adversarial Networks (GANs) to generate statistically similar inorganic nitrogen (IN) data.
This synthetic data set works in tandem with data from the Decision Support System for Agrotechnology Transfer (DSSAT). To address the data's inherent time-series nature, we use the power of Long Short-Term Memory (LSTM) neural networks in our predictive model. The resulting model is a sophisticated and accurate tool that can provide reliable estimates without extensive soil testing. This not only ensures precision in nutrient management but is also a cost-effective and dependable solution for crop production optimization.
Thomas Woodruff
Model Predictive Control of Nonlinear Latent Force ModelsWhen & Where:
M2SEC, Room G535
Committee Members:
Jim Stiles, ChairMichael Branicky
Heechul Yun
Abstract
Model Predictive Control (MPC) has emerged as a potent approach for controlling nonlinear systems in the robotics field and various other engineering domains. Its efficacy lies in its capacity to predictively optimize system behavior while accommodating state and input constraints. Although MPC typically relies on precise dynamic models to be effective, real-world dynamic systems often harbor uncertainties. Ignoring these uncertainties can lead to performance degradation or even failure in MPC.
Nonlinear latent force models, integrating latent uncertainties characterized as Gaussian processes, hold promise for effectively representing nonlinear uncertain systems. Specifically, these models incorporate the state-space representation of a Gaussian process into known nonlinear dynamics, providing the ability to simultaneously predict future states and uncertainties.
This thesis delves into the application of MPC to nonlinear latent force models, aiming to control nonlinear uncertain systems. We formulate a stochastic MPC problem and, to address the ensuing receding-horizon stochastic optimization problem, introduce a scenario-based approach for a deterministic approximation. The resulting scenario-based approach is assessed through simulation studies centered on the motion planning of an autonomous vehicle. The simulations demonstrate the controller's adeptness in managing constraints and consistently mitigating the effects of disturbances. This proposed approach holds promise for various robotics applications and beyond.
Sai Soujanya Ambati
BERT-NEXT: Exploring Contextual Sentence UnderstandingWhen & Where:
Eaton Hall, Room 2001B
Committee Members:
Prasad Kulkarni, ChairHongyang Sun
Abstract
The advent of advanced natural language processing (NLP) techniques has revolutionized the way we handle textual data. This project presents the implementation of exploring contextual sentence understanding on the Quora Insincere Questions dataset using the pretrained BERT architecture. In this study, we explore the application of BERT, a bidirectional transformer model, for text classification tasks. The goal is to classify if a question contains hateful, disrespectful or toxic content. BERT represents the state-of-the-art in language representation models and has shown strong performance on various natural language processing tasks. In this project, the pretrained BERT base model is fine-tuned on a sample of the Quora dataset for next sentence prediction. Results show that with just 1% of the data (around 13,000 examples), the fine-tuned model achieves over 90% validation accuracy in identifying insincere questions after 4 epochs of training. This demonstrates the effectiveness of leveraging BERT for text classification tasks with minimal labeled data requirements. Being able to automatically detect toxic, hateful or disrespectful content is important to maintain healthy online discussions. However, the nuances of human language make this a challenging natural language processing problem. Insincere questions may contain offensive language, hate speech, or misinformation, making their identification crucial for maintaining a positive and safe online environment. In this project, we explore using the pretrained Bidirectional Encoder Representations from Transformers (BERT) model for next sentence prediction on the task of identifying insincere questions.