Deceptive Signals: Unveiling and Countering Sensor Spoofing Attacks on Cyber Systems
Drew Davidson
Rongqing Hui
Bo Luo
Haiyang Chao
In modern computer systems, sensors play a critical role in enabling a wide range of functionalities, from navigation in autonomous vehicles to environmental monitoring in smart homes. Acting as an interface between physical and digital worlds, sensors collect data to drive automated functionalities and decision-making. However, this reliance on sensor data introduces significant potential vulnerabilities, leading to various physical, sensor-enabled attacks such as spoofing, tampering, and signal injection. Sensor spoofing attacks, where adversaries manipulate sensor input or inject false data into target systems, pose serious risks to system security and privacy.
In this work, we have developed two novel sensor spoofing attack methods that significantly enhance both efficacy and practicality. The first method employs physical signals that are imperceptible to humans but detectable by sensors. Specifically, we target deep learning based facial recognition systems using infrared lasers. By leveraging advanced laser modeling, simulation-guided targeting, and real-time physical adjustments, our infrared laser-based physical adversarial attack achieves high success rates with practical real-time guarantees, surpassing the limitations of prior physical perturbation attacks. The second method embeds physical signals, which are inherently present in the system, into legitimate patterns. In particular, we integrate trigger signals into standard operational patterns of actuators on mobile devices to construct remote logic bombs, which are shown to be able to evade all existing detection mechanisms. Achieving a zero false-trigger rate with high success rates, this novel sensor bomb is highly effective and stealthy.
Our study on emerging sensor-based threats highlights the urgent need for comprehensive defenses against sensor spoofing. Along this direction, we design and investigate two defense strategies to mitigate these threats. The first strategy involves filtering out physical signals identified as potential attack vectors. The second strategy is to leverage beneficial physical signals to obfuscate malicious patterns and reinforce data integrity. For example, side channels targeting the same sensor can be used to introduce cover signals that prevent information leakage, while environment-based physical signals serve as signatures to authenticate data. Together, these strategies form a comprehensive defense framework that filters harmful sensor signals and utilizes beneficial ones, significantly enhancing the overall security of cyber systems.