Building Better with Blocks – A Novel Secure Multi-Channel Internet Memory Information Control (S-MIMIC) Protocol for Complex Latency Sensitive Applications
Arvin Agah
Perry Alexander
Bo Luo
Reza Barati
Multimedia networking is the area of study associated with the delivery of heterogeneous data including, but not limited to, imagery, video, audio, and interactive content. Multimedia and communication network researchers have continually struggled to devise solutions for addressing the three core challenges in multimedia delivery: security, reliability, and performance. Solutions to these challenges typically exist in a spectrum of compromises achieving gains in one aspect at the cost of one or more of the others. Networked videogames represent the pinnacle of multimedia presented in a real-time interactive format. Continual improvements to multimedia delivery have led to tools such as buffering, redundant coupling of low-resolution alternative data streams, congestion avoidance, and forced in-order delivery of best-effort service; however, videogames cannot afford to pay the latency tax of these solutions in their current state.
I developed the Secure Multi-Channel Internet Memory Information Control (S-MIMIC) protocol as a novel solution to address these challenges. The S-MIMIC protocol leverages recent developments in blockchain and distributed ledger technology, coupled with creative enhancements to data representation and a novel data model. The S-MIMIC protocol also implements various novel algorithms for create, read, update, and delete (CRUD) interactions with distributed ledger and blockchain technologies. For validation, the S-MIMIC protocol was integrated with an open source open source First-Person Shooter (FPS) videogame to demonstrate its ability to transfer complex data structures under extreme network latency demands. The S-MIMIC protocol demonstrated improvements in confidentiality, integrity, availability and data read operations under all test conditions. Data write performance of S-MIMIC is slightly below traditional TCP-based networking in unconstrained networks, but matches performance in networks exhibiting 150 milliseconds of delay or more.
Though the S-MIMIC protocol was evaluated for use in networked videogames, its potential uses are far reaching with promising applicability to medical information, legal documents, financial transactions, information security threat feeds and many other use cases that require security, reliability and performance guarantees.