Assessing Processor Allocation Strategies for Online List Scheduling of Moldable Task Graphs


Student Name: Mary Jeevana Pudota
Defense Date:
Location: Eaton Hall, Room 2001B
Chair: Hongyang Sun

David Johnson

Prasad Kulkarni

Abstract:

Scheduling a graph of moldable tasks, where each task can be executed by a varying number of

processors with execution time depending on the processor allocation, represents a fundamental

problem in high-performance computing (HPC). The online version of the scheduling problem

introduces an additional constraint: each task is only discovered when all its predecessors have

been completed. A key challenge for this online problem lies in making processor allocation

decisions without complete knowledge of the future tasks or dependencies. This uncertainty can

lead to inefficient resource utilization and increased overall completion time, or makespan. Recent

studies have provided theoretical analysis (i.e., derived competitive ratios) for certain processor

allocation algorithms. However, the algorithms’ practical performance remains under-explored,

and their reliance on fixed parameter settings may not consistently yield optimal performance

across varying workloads. In this thesis, we conduct a comprehensive evaluation of three processor

allocation strategies by empirically assessing their performance under widely used speedup models

and diverse graph structures. These algorithms are integrated into a List scheduling framework that

greedily schedules ready tasks based on the current processor availability. We perform systematic

tuning of the algorithms’ parameters and report the best observed makespan together with the

corresponding parameter settings. Our findings highlight the critical role of parameter tuning in

obtaining optimal makespan performance, regardless of the differences in allocation strategies.

The insights gained in this study can guide the deployment of these algorithms in practical runtime

systems.

Degree: MS Thesis Defense (CS)
Degree Type: MS Thesis Defense
Degree Field: Computer Science