Anytime Computer Vision for Autonomous Driving


Student Name: QiTao Weng
Defense Date:
Location: Eaton Hall, Room 2001B
Chair: Heechul Yun

Drew Davidson

Shawn Keshmiri

Abstract:

Latency–accuracy tradeoffs are fundamental in real-time applications of deep neural networks (DNNs) for cyber-physical systems. In autonomous driving, in particular, safety depends on both prediction quality and the end-to-end delay from sensing to actuation. We observe that (1) when latency is accounted for, the latency-optimal network configuration varies with scene context and compute availability; and (2) a single fixed-resolution model becomes suboptimal as conditions change.

We present a multi-resolution, end-to-end deep neural network for the CARLA urban driving challenge using monocular camera input. Our approach employs a convolutional neural network (CNN) that supports multiple input resolutions through per-resolution batch normalization, enabling runtime selection of an ideal input scale under a latency budget, as well as resolution retargeting, which allows multi-resolution training without access to the original training dataset.

We implement and evaluate our multi-resolution end-to-end CNN in CARLA to explore the latency–safety frontier. Results show consistent improvements in per-route safety metrics—lane invasions, red-light infractions, and collisions—relative to fixed-resolution baselines.

Degree: MS Thesis Defense (CS)
Degree Type: MS Thesis Defense
Degree Field: Computer Science