An Analysis of Bluetooth Mesh Security Features in the Context of Secure Communications


Student Name: Jarrett Zeliff
Defense Date:
Location: Eaton Hall, Room 1
Chair: Alexandru Bardas

Drew Davidson

Fengjun Li

Abstract:

Significant developments in communication methods to help support at-risk populations have increased over the last 10 years. We view at-risk populations as a group of people present in environments where the use of infrastructure or electricity, including telecommunications, is censored and/or dangerous. Security features that accompany these communication mechanisms are essential to protect the confidentiality of its user base and the integrity and availability of the communication network.

In this work, we look at the feasibility of using Bluetooth Mesh as a communication network and analyze the security features that are inherent to the protocol. Through this analysis we determine the strengths and weaknesses of Bluetooth Mesh security features when used as a messaging medium for at risk populations and provide improvements to current shortcomings. Our analysis includes looking at the Bluetooth Mesh Networking Security Fundamentals as described by the Bluetooth Sig: Encryption and Authentication, Separation of Concerns, Area isolation, Key Refresh, Message Obfuscation, Replay Attack Protection, Trashcan Attack Protection, and Secure Device Provisioning.  We look at how each security feature is implemented and determine if these implementations are sufficient in protecting the users from various attack vectors. For example, we examined the Blue Mirror attack, a reflection attack during the provisioning process which leads to the compromise of network keys, while also assessing the under-researched key refresh mechanism. We propose a mechanism to address Blue-Mirror-oriented attacks with the goal of creating a more secure provisioning process.  To analyze the key refresh mechanism, we implemented our own full-fledged Bluetooth Mesh network and implemented a key refresh mechanism. Through this we form an assessment of the throughput, range, and impacts of a key refresh in both lab and field environments that demonstrate the suitability of our solution as a secure communication method.

Degree: MS Thesis Defense (CS)
Degree Type: MS Thesis Defense
Degree Field: Computer Science