
 1 

 

Abstract—this paper presents a numerical method to match an 

arbitrary complex impedance to a real source impedance using a 

numerical technique. The motivation of applying the numerical 

method presented here is to provide a more accurate location of 

the intersections in comparison with a naked-eye reading on the 

Smith Chart for different circles (i.e. constant VSWR circle and 

     circle).  

 
Index Terms—Matched networking problem, Smith Chart, 

Transmission line.  

 

I. INTRODUCTION 

The ultimate goal of the impedance matching is to minimize 

the reflection coefficient between a known source output 

impedance and an arbitrary load impedance connected by a 

transmission line of a known characteristic impedance, 

thereby achieving maximum power transfer.  This can be 

accomplished by the means of a low-loss matching network. 

There are a number of different techniques that can be used to 

solve the impedance matching problem [2] [3]. 

 

One common technique involves the use of the Smith Chart. 

The Smith Chart is a graphic representation of transmission-

line parameters that is commonly used for both numerical 

calculations and presenting design parameters in a visual 

setting [1]. The Smith Chart is a four-dimensional (4-D) 

representation of all possible complex impedances with 

respect to coordinates defined by the complex reflection 

coefficient.  

 

The Smith Chart (SC) provides a way to connect the reflection 

coefficient and the normalized impedance by 
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where  is the normalized impedance at z=l , with l is the 

distance between the load and the lumped element.  
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In general, it is more convenient to use normalized 

impedances or admittances to design the desired matching 

network, instead of directly calculating the required reflection 

coefficient. There are a few common topologies used for 

impedance matching.  Each configuration requires a set of 

defined parameters. For example, synthesizing a series 

lumped-element circuit requires the knowledge of the distance 

between the load and the lumped element in use. In addition, 

the actual value of the lumped element, such as a capacitor or 

an inductor, is also needed.  

 

The Smith Chart provides us a convenient and visual way to 

locate the intersection point, which is used to calculate the 

actual value of lumped elements. However, it is rather difficult 

to accurately identify the intersection point under the limit of 

the naked-eye observation due to the relatively large scale of 

the grid on a usual Smith Chart. Consequently, a method that 

can produce accurate values of the intersection points would 

be advantageous.  

 

This article introduces a numerical method which combines 

graphical and analytical equations to provide a precise 

location of the solutions on the Smith Chart. Section II 

presents an overview of the series lumped-element topology to 

match an arbitrary load impedance to a purely real source 

impedance. Section III demonstrates the use of the proposed 

numerical method to solve a conventional L-section 

impedance matching problem for an arbitrary load impedance. 

II. SERIES LUMPED METHOD 

The series lumped-element method is usually considered the 

simplest technique to match an arbitrary complex impedance 

to a purely real source impedance. The schematic 

configuration is shown in Figure 1. 

 

 
Figure 1: Configuration of lumped-element series matching network 
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There are two parameters that need to be obtained to design 

the matching network with this method. The first one is the 

distance (l) between the load and the lumped element. The 

second one is the actual value of ‘Z_series’ which is used to 

eliminate the reactance of the input impedance. It is assumed 

that the source impedance is equal to the characteristic 

impedance of the transmission line Z0. Using normalized 

values, we have: 
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Under the assumption of a lossless transmission line, the 

equality 
inputload   is satisfied everywhere along the 

transmission line. 

 
Figure 2: Illustration of the Series-Lumped method on the Smith 

Chart (The yellow dot represents the normalized load impedance. The 

green dot represents the intersection of the constant VSWR circle with 

the 1+jx circle. The red dot represents the input impedance after 

matching (perfect matching)). 

 

Now, the question becomes how to locate the accurate 

position for the intersection (green dot in Figure 2) of the 

constant VSWR  circle and1+jx circle on the impedance Smith 

Chart. 

 

In order to make the procedure easier to demonstrate, let us 

consider the following example: 

1. Load impedance: ][5030  jZL
 

2. Characteristic impedance of transmission line: 
                          ][1000 Z  

Then, the step-by-step procedure for finding the numerical 

value of the intersection (green dot in Figure 2) will be: 

(1). Normalize the load impedance.  
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(2). Find the reflection coefficient ( ) at the load and 

construct the constant VSWR circle (red circle in Figure 2). 
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(3). Before adding the lumped element ,the normalized input 

impedance should be         , which lies on the 1+jx 

circle of the impedance Smith Chart. By applying the 

equation   
   

   
, the reflection coefficient (   ) at the 

generator (source) terminal is: 
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(4). Assume the transmission line is lossless; the magnitude of 

the reflection coefficient should be identical everywhere along 

this transmission line. The relation |  |  |   | will be 

satisfied (the radius of constant Gamma circle). From step (2) 

and step (3), the value of x can be calculated as. 
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(5). The intersection can be verified by using a compass to 

draw a constant VSWR circle intersecting with 1+jx circle on 

the impedance Smith Chart. In this case, the value read from 

the Smith Chart is           , which appears very close to 

the numerical calculation results, but not as accurate as the 

value obtained by the numerical method. 

 

We can choose either a capacitor or an inductor as the lumped 

element required to cancel out the reactive part of the original 

complex input impedance. After adding the lumped element, 

the input impedance becomes purely real and equal to Z0. 

 

In general, for a given magnitude of reflection coefficient at 

the load impedance on a lossless transmission line, the 

formula of the numerical solution can be generalized as: 
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To find a lumped element which has the numerical value 
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 in a Phasor representation to make the      , 

we can use the following procedures:   

1. Replacing capacitor by the series lumped element. 
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2. Replacing inductor by the series lumped element. 
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This technique can be extended to a shunt lumped-element 

case by using the admittance Smith Chart instead of its 

impedance counterpart. 
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III. L-SECTION METHOD 

The L-Section network matching technique is a combination 

of Series Lumped Method and Shunt Lumped Method. It 

utilizes purely reactive components such as a capacitor and an 

inductor to force the input impedance/admittance of an 

unmatched load to become purely real. The Smith Chart is a 

powerful tool to design the L-Section network, but first one 

must locate the required intersection points on the Smith Chart 

to synthesize an L-Section matching network.  

  

According to the resistance value of the load impedance, there 

are two types of L-Section networks. Let us assume that the 

normalized load impedance is           : 

 

 Type 1: 1r  (Figure 3) 

 

The key point for synthesizing this Type 1 network is to locate 

the intersection of jx1 circle and 
loadloadload jbgy  circle on 

the admittance Smith Chart, where
loady is the normalized load 

admittance. The steps required to find this point are: 

a) Construct the jx1 circle on the admittance Smith 

Chart. (red circle in Figure 4) 

b) Find the normalized input admittance by locating the 

intersection of jbgy loadin  and the jx1 circle.  

(where 
loadg is fixed, and b  is a variable ) 

c) Convert the input admittance back to impedance and 

find the proper series reactive component to cancel 

out the imaginary part of the load impedance. 

To further illustrate this technique, let us consider the 

following example with the procedures illustrated in Figure 4. 

Assume the given conditions are: 

1. Load impedance: ][100200  jZL
 

2. Characteristic impedance of transmission line: 
                          ][1000 Z  

3. Operating Frequency: ][ 500 MHzf   

Then the procedure for finding the normalized input 

admittance (  ) has two steps: 

(1). Normalize the load admittance and construct      circle 

on admittance Smith Chart. 
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(the green cross in Figure 4 represents the normalized load 

admittance) 

 
Figure 3: Type 1 L-Section network configuration 

 

 
Figure 4: illustration of the procedure to design a Type 1 L-Section 

matching network. (Red Circle: 1+jx circle on admittance Smith 

Chart. Blue Circle: 1+jb circle on admittance Smith Chart. Pink 

Dash-line Circle:        circle (  is given).   : normalized load 

admittance.    and   : input admittances.    and   : input 

impedances. ) 

 

(2). Find the input admittances marked as    and    in Figure 4 

by applying the ‘hybrid’ numerical method proposed in 

following. 
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    in Equation (6) is the intersection of          circle 

and                    circle. Therefore, it is valid to 

assume that                where       is a fixed value 

from the normalized load admittance. So far, the only variable 

for identifying the normalized input admittance is     . 

Plugging the                into Equation (6), it becomes: 
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At this point, it is convenient to regard the Smith Chart solely 

as a complex plane for reflection coefficient (
in ) which has 

the range of   [    ] and   [    ]. From a geometric 

point of view, the      circle (red circle in Figure 4) has a 

radius of 0.5 and a center at -0.5, and the normalized input 
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admittance    lies on this circle. Therefore, the distance 

between point   and point F in Figure 4 should be 0.5. The 

distance between these two points can be obtained by: 
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Now, this equation has only one unknown,    , and it can be 

solved with numerical techniques, resulting in

5.04899.0 inb . This result is consistent with the value that 

can be directly read from Smith Chart.  

Once the input admittance is found, the shunt element in 

Figure 4 can be determined by calculating the difference 

between the complex part of normalized load admittance and 

the normalized input admittance (  ). The final step is to 

convert the normalized input admittance to impedance using 

Equation (7), and then determine the series element by 

applying the Series Lumped Method. 

 

The two numerical solutions for the shunt element and series 

element are: 

 

Shunt element: 

1. Using a capacitor:  pFC  92.0  

2. Using an inductor: nHL  14.46  

Series element: 

1.  Using an inductor:  nHL  98.38  

2.  Using a capacitor:  pFC  60.2  

*only consider the capacitor-inductor or inductor-capacitor combination. 

 

 Type 2: 1r  (Figure 5) 

 

For the Type 2 L-Section configuration, a similar design 

procedure can be used. The basic design idea for the Type 2 

case is to use a series lumped element to bring the input 

impedance (   in Figure 6) to the      circle by adding a 

series lumped reactive element on the load impedance (   in 

Figure 6), and then converting it back to input admittance 

(   in Figure 6). The complex part of the input admittance 

can be cancelled by applying the Shunt-Lumped Method. The 

input admittance will become a purely real number with the 

characteristic admittance
0  Y .  

 
Figure 5: Type 2 L-Section network configuration 

 
Figure 6: Illustration of the Type 2 L-Section matching network 

technique. (Red Circle: 1+jb circle on impedance Smith Chart. Blue 

Circle: 1+jx circle on impedance Smith Chart. Pink Dash-line Circle: 

       circle (  is given).   : normalized load impedance.    and 

  : input admittance.    and   : input impedance. ) 

 

The key point of designing a Type 2 L-Section matching 

network relies on locating the normalized input impedance 

(                       on the      circle, as the Type 1 L-

Section does. The numerical method depicted in the Type 1 

network solution is still applicable in this case because the 

input impedance (  ) is on the            circle where inr

is a fixed number, and the only variable is   which is the 

imaginary part of the input impedance. Once the input 

impedance is determined, the next step is to use a shunt 

element to cancel the susceptance of the input admittance.  

 

The flow diagram in Figure 7 illustrates the procedure of L-

section impedance matching technique by applying ‘hybrid’ 

numerical method. 

 
Figure 7: Flow diagram of utilizing 'hybrid' numerical method 
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IV. COMPARISON WITH OTHER METHODS 

There are several numerical methods developed for 

synthesizing an L-Section matching network. For example, 

Pozar [2] demonstrated an analytical solution for L-section 

impedance matching. Using the same example given in 

Section II and applying Pozar’s method, the lumped element 

values for the shunt and series elements can be obtained: 

Shunt element: 

1. Using a capacitor:   pFC  92.0  

2. Using an inductor:   nHL  14.46  

Series element: 

1. Using an inductor:   nHL  98.38  

2. Using a capacitor:   pFC  60.2  

 

Another purely numerical method has been demonstrated by 

Rhea [3]. He derived a general formula for the Type 1 L-

Section impedance matching network.  Rhea’s formula should 

also be applicable to the same example given earlier.  

A summary of the results obtained with the three different 

methods is presented in Table 1. 

 

 

Table 1 Calculation results with three different methods 

for ][100200  jZL , ][1000 Z
, and 

][ 500 MHzf     

 

 POZER’S Rhea’s ‘HYBRID’ 

NUMERICAL 

1L (shunt) 46.14 nH 46.14 nH 46.14 nH 

1C (series) 2.60 pF 2.60 pF 2.60 pF 

2C (shunt) 0.92 pF 0.92 pF 0.92 pF 

2L (series) 38.98 nH 38.98 nH 38.98 nH 

 

Based on the results obtained from Pozar’s and Rhea’s 

formula, and comparing them with those obtained from 

‘hybrid’ numerical method outlined here, it is apparent that all 

three methods agree with each other. Pozar’s and Rhea’s 

methods were directly derived from the definition of the 

impedance matching condition, whereas the ‘hybrid’ method 

relies on the Smith Chart and utilizes some geometric 

properties. This makes the calculation procedure more 

intuitive than the purely analytical methods. On the other 

hand, care must be taken when applying these three methods. 

All three methods are valid under the same assumption that 

the load impedance is a constant value for all operating 

frequencies and the transmission line is lossless. In the other 

words, all three methods are limited to a narrowband network.  

However, there are some developed techniques for wideband 

impedance matching, such as multi-L-section, multi-quarter-

wave, etc.  

V. SUMMARY 

An alternative ‘hybrid’ numerical method utilizing the 

geometric knowledge of the Smith Chart is superior than 

purely numerical methods due to its accuracy of calculation 

and ease of use. The Smith Chart originated from the 

representation of reflection coefficient ( ) on complex 

coordinate (Cartesian coordinate). Thus, from an algebraic 

point of view, the intersection point can be determined by 

introducing the geometric relations in the Cartesian system. 

Taking advantage of geometric properties on the Smith Chart 

will give a readily comprehensible calculation. The ‘hybrid’ 

numerical method is straightforward to implement and will 

lead to a much improved precision instead of directly reading 

the Smith Chart with the naked eye.   
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